支持向量机
随机森林
光容积图
人工智能
计算机科学
径向基函数核
模式识别(心理学)
血糖性
径向基函数
糖尿病
机器学习
医学
人工神经网络
核方法
无线
电信
内分泌学
作者
Enikö Vargová,Andrea Hároniková,Zuzana Nováková
出处
期刊:Lékař a technika
日期:2023-06-30
卷期号:: 19-24
标识
DOI:10.14311/ctj.2023.1.04
摘要
This paper focuses on non-invasive blood glucose determination using photoplethysmographic (PPG) signals, which is crucial for managing diabetes. Diabetes stands as one of the world’s major chronic diseases. Untreated diabetes frequently leads to fatalities. Current self-monitoring techniques for measuring diabetes require invasive procedures such as blood or bodily fluid sampling, which may be very uncomfortable. Hence, there is an opportunity for non-invasive blood glucose monitoring through smart devices capable of measuring PPG signals. The primary goal of this research was to propose methods for glycemic classification into two groups (low and high glycemia) and to predict specific glycemia values using machine learning techniques. Two datasets were created by measuring PPG signals from 16 individuals using two different smart devices – a smart wristband and a smartphone. Simultaneously, the reference blood glucose levels were invasively measured using a glucometer. The PPG signals were preprocessed, and 27 different features were extracted. With the use of feature selection, only 10 relevant features were chosen. Numerous machine learning models were developed. Random Forest (RF) and Support Vector Machine (SVM) with the radial basis function (RBF) kernel performed best in classifying PPG signals into two groups. These models achieved an accuracy of 76% (SVM) and 75% (RF) on the smart wristband test dataset. The functionality of the proposed models was then verified on the smartphone test dataset, where both models achieved similar accuracy: 74% (SVM) and 75% (RF). For predicting specific glycemia values, RF performed best. Mean Absolute Error (MAE) was 1.25 mmol/l on the smart wristband test dataset and 1.37 mmol/l on the smartphone test dataset.
科研通智能强力驱动
Strongly Powered by AbleSci AI