Temporal Deep Learning Image Processing Model for Natural Gas Leak Detection Using OGI Camera

计算机科学 人工智能 计算机视觉 图像(数学) 泄漏 深度学习 图像处理 自然(考古学) 模式识别(心理学) 地质学 环境科学 古生物学 环境工程
作者
Mohammad M. Korjani,David M. Conley,Mark A. Smith
标识
DOI:10.4043/34756-ms
摘要

Abstract Natural gas extraction systems often encounter manufacturing defects or develop defects over time, leading to gas leaks. These leaks pose challenges, causing revenue losses and environmental pollution. Detecting gas leaks in the vast array of extraction, transfer, and storage equipment within these systems can be arduous, allowing leaks to persist unnoticed. Additionally, natural gas leaks are not visible to naked eyes, further complicating their detection. We developed a novel deep learning image processing model that utilizes videos captured by a specialized Optical Gas Imaging (OGI) camera to detect natural gas leaks. The temporal deep learning algorithm is designed to identify patterns associated with gas leaks and improve its performance through supervised learning. Our model incorporates algorithms to detect background environments, motion, equipment, and classify gas leaks. Our model employs leak identification algorithms to determine the presence of gas leaks. These algorithms calculate the probability of detected motion indicating a gas leak based on long-term and short-term background subtraction, detected motion, motion duration, equipment location, and telemetry data. To minimize false positives, we have developed image segmentation and object detection models to identify known objects, such as equipment, people, and cars, within the video footage. To train our model we collect more than 10,000 short videos from real fields and include simulated data with known rate controlled gas release in different situations. Data consist of wide range of weather situations including different temperature, wind speed, humidity in sunny, rainy, and snowy fields. We validated our model by conducting experiments involving actual footage from the field. The model achieved a 98% true positive rate, and a 100% true negative rate, correctly refraining from sending an alarm for all non-releases. Additionally, we developed a postprocessing algorithm capable of estimating the gas leak rate based on the volume of gas leaks observed in the video footage and their distance from the camera. Our experimental results demonstrate that the detected leak rates exhibit an accuracy exceeding 78%. By employing this deep learning image processing model, natural gas extraction systems can significantly enhance their ability to detect gas leaks promptly, reducing revenue losses and mitigating environmental impact.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
孤独靖柏发布了新的文献求助10
1秒前
2秒前
科研通AI2S应助字符串采纳,获得10
2秒前
愤怒的紫发布了新的文献求助10
2秒前
2秒前
3秒前
火锅发布了新的文献求助10
3秒前
强仔关注了科研通微信公众号
4秒前
水上书发布了新的文献求助10
4秒前
可爱的函函应助晴空万里采纳,获得10
5秒前
5秒前
梁漂亮完成签到 ,获得积分10
6秒前
陶醉觅夏发布了新的文献求助10
7秒前
cedricleonard发布了新的文献求助10
7秒前
pgg发布了新的文献求助10
7秒前
8秒前
9秒前
10秒前
10秒前
大脑小用完成签到 ,获得积分10
10秒前
安静的迎荷完成签到,获得积分10
10秒前
耶耶喵喵完成签到 ,获得积分10
11秒前
Nature完成签到,获得积分10
12秒前
1117发布了新的文献求助10
12秒前
13秒前
YY发布了新的文献求助10
13秒前
DO发布了新的文献求助10
14秒前
14秒前
李健应助胖一达采纳,获得10
15秒前
15秒前
优秀的盼夏完成签到,获得积分10
16秒前
16秒前
16秒前
BALANCE发布了新的文献求助10
17秒前
17秒前
华仔应助pp‘s采纳,获得10
17秒前
小蘑菇应助陈青桃采纳,获得30
17秒前
丘比特应助1117采纳,获得10
18秒前
WSY发布了新的文献求助10
19秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170956
求助须知:如何正确求助?哪些是违规求助? 2821913
关于积分的说明 7937142
捐赠科研通 2482412
什么是DOI,文献DOI怎么找? 1322472
科研通“疑难数据库(出版商)”最低求助积分说明 633639
版权声明 602627