Temporal Deep Learning Image Processing Model for Natural Gas Leak Detection Using OGI Camera

计算机科学 人工智能 计算机视觉 图像(数学) 泄漏 深度学习 图像处理 自然(考古学) 模式识别(心理学) 地质学 环境科学 环境工程 古生物学
作者
Mehdi Korjani,David M. Conley,Mark A. Smith
出处
期刊:Offshore Technology Conference Asia 被引量:1
标识
DOI:10.4043/34756-ms
摘要

Abstract Natural gas extraction systems often encounter manufacturing defects or develop defects over time, leading to gas leaks. These leaks pose challenges, causing revenue losses and environmental pollution. Detecting gas leaks in the vast array of extraction, transfer, and storage equipment within these systems can be arduous, allowing leaks to persist unnoticed. Additionally, natural gas leaks are not visible to naked eyes, further complicating their detection. We developed a novel deep learning image processing model that utilizes videos captured by a specialized Optical Gas Imaging (OGI) camera to detect natural gas leaks. The temporal deep learning algorithm is designed to identify patterns associated with gas leaks and improve its performance through supervised learning. Our model incorporates algorithms to detect background environments, motion, equipment, and classify gas leaks. Our model employs leak identification algorithms to determine the presence of gas leaks. These algorithms calculate the probability of detected motion indicating a gas leak based on long-term and short-term background subtraction, detected motion, motion duration, equipment location, and telemetry data. To minimize false positives, we have developed image segmentation and object detection models to identify known objects, such as equipment, people, and cars, within the video footage. To train our model we collect more than 10,000 short videos from real fields and include simulated data with known rate controlled gas release in different situations. Data consist of wide range of weather situations including different temperature, wind speed, humidity in sunny, rainy, and snowy fields. We validated our model by conducting experiments involving actual footage from the field. The model achieved a 98% true positive rate, and a 100% true negative rate, correctly refraining from sending an alarm for all non-releases. Additionally, we developed a postprocessing algorithm capable of estimating the gas leak rate based on the volume of gas leaks observed in the video footage and their distance from the camera. Our experimental results demonstrate that the detected leak rates exhibit an accuracy exceeding 78%. By employing this deep learning image processing model, natural gas extraction systems can significantly enhance their ability to detect gas leaks promptly, reducing revenue losses and mitigating environmental impact.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cloud发布了新的文献求助10
刚刚
华仔应助失眠的耳机采纳,获得10
刚刚
大胆班完成签到,获得积分10
刚刚
刚刚
霍霍发布了新的文献求助10
1秒前
馆长应助zj采纳,获得30
1秒前
善学以致用应助zj采纳,获得10
1秒前
曾无忧发布了新的文献求助10
1秒前
wrx_KGM完成签到,获得积分10
1秒前
大模型应助purist采纳,获得10
3秒前
Dr_Sean发布了新的文献求助10
3秒前
4秒前
4秒前
Bob完成签到,获得积分10
4秒前
英俊的铭应助天宁采纳,获得10
4秒前
wrx_KGM发布了新的文献求助10
4秒前
4秒前
4秒前
李健应助碧蓝恶天采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
浮游应助路在脚下采纳,获得10
7秒前
8秒前
8秒前
可爱的函函应助wrx_KGM采纳,获得10
8秒前
温婉的曼冬完成签到,获得积分10
9秒前
Hope发布了新的文献求助30
9秒前
四夕完成签到 ,获得积分10
10秒前
赘婿应助小肥羊采纳,获得10
10秒前
zzm完成签到,获得积分10
12秒前
orixero应助2240920060采纳,获得10
12秒前
一颗星发布了新的文献求助10
13秒前
purist完成签到,获得积分10
13秒前
16秒前
彪壮的青雪完成签到,获得积分10
16秒前
小二郎应助phl采纳,获得10
16秒前
16秒前
Fly完成签到,获得积分10
17秒前
18秒前
彭于晏应助一颗星采纳,获得10
18秒前
Yang发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
解放军总医院眼科医学部病例精解 1000
温州医科大学附属眼视光医院斜弱视与双眼视病例精解 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4896403
求助须知:如何正确求助?哪些是违规求助? 4178074
关于积分的说明 12969799
捐赠科研通 3941347
什么是DOI,文献DOI怎么找? 2162226
邀请新用户注册赠送积分活动 1180680
关于科研通互助平台的介绍 1086242