Temporal Deep Learning Image Processing Model for Natural Gas Leak Detection Using OGI Camera

计算机科学 人工智能 计算机视觉 图像(数学) 泄漏 深度学习 图像处理 自然(考古学) 模式识别(心理学) 地质学 环境科学 环境工程 古生物学
作者
Mehdi Korjani,David M. Conley,Mark A. Smith
标识
DOI:10.4043/34756-ms
摘要

Abstract Natural gas extraction systems often encounter manufacturing defects or develop defects over time, leading to gas leaks. These leaks pose challenges, causing revenue losses and environmental pollution. Detecting gas leaks in the vast array of extraction, transfer, and storage equipment within these systems can be arduous, allowing leaks to persist unnoticed. Additionally, natural gas leaks are not visible to naked eyes, further complicating their detection. We developed a novel deep learning image processing model that utilizes videos captured by a specialized Optical Gas Imaging (OGI) camera to detect natural gas leaks. The temporal deep learning algorithm is designed to identify patterns associated with gas leaks and improve its performance through supervised learning. Our model incorporates algorithms to detect background environments, motion, equipment, and classify gas leaks. Our model employs leak identification algorithms to determine the presence of gas leaks. These algorithms calculate the probability of detected motion indicating a gas leak based on long-term and short-term background subtraction, detected motion, motion duration, equipment location, and telemetry data. To minimize false positives, we have developed image segmentation and object detection models to identify known objects, such as equipment, people, and cars, within the video footage. To train our model we collect more than 10,000 short videos from real fields and include simulated data with known rate controlled gas release in different situations. Data consist of wide range of weather situations including different temperature, wind speed, humidity in sunny, rainy, and snowy fields. We validated our model by conducting experiments involving actual footage from the field. The model achieved a 98% true positive rate, and a 100% true negative rate, correctly refraining from sending an alarm for all non-releases. Additionally, we developed a postprocessing algorithm capable of estimating the gas leak rate based on the volume of gas leaks observed in the video footage and their distance from the camera. Our experimental results demonstrate that the detected leak rates exhibit an accuracy exceeding 78%. By employing this deep learning image processing model, natural gas extraction systems can significantly enhance their ability to detect gas leaks promptly, reducing revenue losses and mitigating environmental impact.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仇湘完成签到,获得积分10
刚刚
Marybaby发布了新的文献求助10
刚刚
Ha完成签到,获得积分10
刚刚
刚刚
认真乐双完成签到,获得积分10
1秒前
1秒前
罗中翠完成签到,获得积分10
2秒前
yanshapo发布了新的文献求助10
2秒前
nininini完成签到 ,获得积分10
2秒前
CodeCraft应助科研狗采纳,获得10
3秒前
3秒前
小宝发布了新的文献求助10
3秒前
可爱的函函应助螺丝老人采纳,获得30
3秒前
快乐再出发完成签到,获得积分10
3秒前
ikun完成签到,获得积分10
5秒前
Jouleken完成签到,获得积分10
5秒前
哈哈哈发布了新的文献求助10
5秒前
王金娥完成签到,获得积分10
6秒前
6秒前
6秒前
yanshapo完成签到,获得积分10
7秒前
呵浅陌发布了新的文献求助10
7秒前
我是老大应助David采纳,获得10
8秒前
usee完成签到,获得积分10
8秒前
9秒前
GrandeAmore完成签到,获得积分10
9秒前
9秒前
9秒前
思源应助哈哈哈采纳,获得10
10秒前
pluto应助xiaodq采纳,获得10
10秒前
10秒前
qq596发布了新的文献求助10
10秒前
qsw完成签到,获得积分10
10秒前
NexusExplorer应助ddd采纳,获得10
11秒前
11秒前
12秒前
12秒前
五本笔记完成签到 ,获得积分10
12秒前
Marybaby完成签到,获得积分10
12秒前
科目三应助ikun采纳,获得10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009871
求助须知:如何正确求助?哪些是违规求助? 3549812
关于积分的说明 11303839
捐赠科研通 3284342
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886393
科研通“疑难数据库(出版商)”最低求助积分说明 811406