亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Temporal Deep Learning Image Processing Model for Natural Gas Leak Detection Using OGI Camera

计算机科学 人工智能 计算机视觉 图像(数学) 泄漏 深度学习 图像处理 自然(考古学) 模式识别(心理学) 地质学 环境科学 环境工程 古生物学
作者
Mehdi Korjani,David M. Conley,Mark A. Smith
出处
期刊:Offshore Technology Conference Asia 被引量:1
标识
DOI:10.4043/34756-ms
摘要

Abstract Natural gas extraction systems often encounter manufacturing defects or develop defects over time, leading to gas leaks. These leaks pose challenges, causing revenue losses and environmental pollution. Detecting gas leaks in the vast array of extraction, transfer, and storage equipment within these systems can be arduous, allowing leaks to persist unnoticed. Additionally, natural gas leaks are not visible to naked eyes, further complicating their detection. We developed a novel deep learning image processing model that utilizes videos captured by a specialized Optical Gas Imaging (OGI) camera to detect natural gas leaks. The temporal deep learning algorithm is designed to identify patterns associated with gas leaks and improve its performance through supervised learning. Our model incorporates algorithms to detect background environments, motion, equipment, and classify gas leaks. Our model employs leak identification algorithms to determine the presence of gas leaks. These algorithms calculate the probability of detected motion indicating a gas leak based on long-term and short-term background subtraction, detected motion, motion duration, equipment location, and telemetry data. To minimize false positives, we have developed image segmentation and object detection models to identify known objects, such as equipment, people, and cars, within the video footage. To train our model we collect more than 10,000 short videos from real fields and include simulated data with known rate controlled gas release in different situations. Data consist of wide range of weather situations including different temperature, wind speed, humidity in sunny, rainy, and snowy fields. We validated our model by conducting experiments involving actual footage from the field. The model achieved a 98% true positive rate, and a 100% true negative rate, correctly refraining from sending an alarm for all non-releases. Additionally, we developed a postprocessing algorithm capable of estimating the gas leak rate based on the volume of gas leaks observed in the video footage and their distance from the camera. Our experimental results demonstrate that the detected leak rates exhibit an accuracy exceeding 78%. By employing this deep learning image processing model, natural gas extraction systems can significantly enhance their ability to detect gas leaks promptly, reducing revenue losses and mitigating environmental impact.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NLJY完成签到,获得积分10
3秒前
7秒前
8秒前
葵葵完成签到,获得积分10
8秒前
子焱完成签到 ,获得积分10
11秒前
Xiong Siqi发布了新的文献求助10
11秒前
小刘完成签到,获得积分10
11秒前
111完成签到 ,获得积分10
13秒前
14秒前
CodeCraft应助葵葵采纳,获得10
16秒前
阿花阿花发布了新的文献求助10
19秒前
19秒前
火的信仰完成签到,获得积分10
20秒前
木有完成签到 ,获得积分10
20秒前
21秒前
23秒前
23秒前
雨寒完成签到 ,获得积分10
26秒前
英俊的铭应助qqxt采纳,获得10
26秒前
ssu90完成签到 ,获得积分10
27秒前
火的信仰发布了新的文献求助10
29秒前
34秒前
34秒前
英勇羿发布了新的文献求助10
34秒前
山楂发布了新的文献求助10
41秒前
大方的契发布了新的文献求助10
45秒前
婉莹完成签到 ,获得积分0
47秒前
牛八先生完成签到,获得积分10
47秒前
遥知马完成签到,获得积分10
50秒前
英勇羿发布了新的文献求助10
52秒前
55秒前
有点鸭梨呀完成签到 ,获得积分10
56秒前
英俊的铭应助高贵土豆采纳,获得10
1分钟前
慢慢发布了新的文献求助10
1分钟前
莫愁完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
orixero应助云枝采纳,获得10
1分钟前
平心定气完成签到 ,获得积分10
1分钟前
YingLi发布了新的文献求助10
1分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454727
求助须知:如何正确求助?哪些是违规求助? 4562104
关于积分的说明 14284714
捐赠科研通 4485945
什么是DOI,文献DOI怎么找? 2457157
邀请新用户注册赠送积分活动 1447737
关于科研通互助平台的介绍 1422973