已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Temporal Deep Learning Image Processing Model for Natural Gas Leak Detection Using OGI Camera

计算机科学 人工智能 计算机视觉 图像(数学) 泄漏 深度学习 图像处理 自然(考古学) 模式识别(心理学) 地质学 环境科学 环境工程 古生物学
作者
Mehdi Korjani,David M. Conley,Mark A. Smith
出处
期刊:Offshore Technology Conference Asia 被引量:1
标识
DOI:10.4043/34756-ms
摘要

Abstract Natural gas extraction systems often encounter manufacturing defects or develop defects over time, leading to gas leaks. These leaks pose challenges, causing revenue losses and environmental pollution. Detecting gas leaks in the vast array of extraction, transfer, and storage equipment within these systems can be arduous, allowing leaks to persist unnoticed. Additionally, natural gas leaks are not visible to naked eyes, further complicating their detection. We developed a novel deep learning image processing model that utilizes videos captured by a specialized Optical Gas Imaging (OGI) camera to detect natural gas leaks. The temporal deep learning algorithm is designed to identify patterns associated with gas leaks and improve its performance through supervised learning. Our model incorporates algorithms to detect background environments, motion, equipment, and classify gas leaks. Our model employs leak identification algorithms to determine the presence of gas leaks. These algorithms calculate the probability of detected motion indicating a gas leak based on long-term and short-term background subtraction, detected motion, motion duration, equipment location, and telemetry data. To minimize false positives, we have developed image segmentation and object detection models to identify known objects, such as equipment, people, and cars, within the video footage. To train our model we collect more than 10,000 short videos from real fields and include simulated data with known rate controlled gas release in different situations. Data consist of wide range of weather situations including different temperature, wind speed, humidity in sunny, rainy, and snowy fields. We validated our model by conducting experiments involving actual footage from the field. The model achieved a 98% true positive rate, and a 100% true negative rate, correctly refraining from sending an alarm for all non-releases. Additionally, we developed a postprocessing algorithm capable of estimating the gas leak rate based on the volume of gas leaks observed in the video footage and their distance from the camera. Our experimental results demonstrate that the detected leak rates exhibit an accuracy exceeding 78%. By employing this deep learning image processing model, natural gas extraction systems can significantly enhance their ability to detect gas leaks promptly, reducing revenue losses and mitigating environmental impact.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眼中星光发布了新的文献求助10
2秒前
2秒前
2秒前
善学以致用应助百浪多息采纳,获得10
3秒前
张达发布了新的文献求助10
3秒前
4秒前
4秒前
捏捏我的小短腿完成签到,获得积分10
6秒前
RDF发布了新的文献求助10
6秒前
7秒前
7秒前
木木夕云发布了新的文献求助10
8秒前
zhizhi完成签到,获得积分20
8秒前
yinjs158发布了新的文献求助10
8秒前
上官若男应助张达采纳,获得10
9秒前
9秒前
10秒前
文静的刺猬完成签到,获得积分20
11秒前
777567发布了新的文献求助10
12秒前
YuuuY发布了新的文献求助10
12秒前
12秒前
13秒前
快乐石头发布了新的文献求助10
13秒前
sweetrumors发布了新的文献求助10
14秒前
wen发布了新的文献求助30
14秒前
柳易槐发布了新的文献求助20
14秒前
小李子发布了新的文献求助10
14秒前
15秒前
16秒前
yourkit发布了新的文献求助30
18秒前
万能图书馆应助萝卜青菜采纳,获得30
18秒前
AS完成签到,获得积分10
19秒前
JamesPei应助松松果采纳,获得10
19秒前
科目三应助施春婷aaa采纳,获得10
19秒前
小吴完成签到,获得积分10
20秒前
qsq完成签到 ,获得积分10
20秒前
哈哈完成签到 ,获得积分10
21秒前
JamesPei应助wysci采纳,获得10
24秒前
初眠完成签到,获得积分10
24秒前
Bottle完成签到,获得积分10
29秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5209090
求助须知:如何正确求助?哪些是违规求助? 4386405
关于积分的说明 13660783
捐赠科研通 4245503
什么是DOI,文献DOI怎么找? 2329333
邀请新用户注册赠送积分活动 1327184
关于科研通互助平台的介绍 1279467