已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Histopathology Image Classification with Noisy Labels via The Ranking Margins

排名(信息检索) 边距(机器学习) 人工智能 计算机科学 模式识别(心理学) 机器学习 噪音(视频) 图像(数学)
作者
Zhijie Wen,Haixia Wu,Shihui Ying
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (8): 2790-2802
标识
DOI:10.1109/tmi.2024.3381775
摘要

Clinically, histopathology images always offer a golden standard for disease diagnosis. With the development of artificial intelligence, digital histopathology significantly improves the efficiency of diagnosis. Nevertheless, noisy labels are inevitable in histopathology images, which lead to poor algorithm efficiency. Curriculum learning is one of the typical methods to solve such problems. However, existing curriculum learning methods either fail to measure the training priority between difficult samples and noisy ones or need an extra clean dataset to establish a valid curriculum scheme. Therefore, a new curriculum learning paradigm is designed based on a proposed ranking function, which is named The Ranking Margins (TRM). The ranking function measures the 'distances' between samples and decision boundaries, which helps distinguish difficult samples and noisy ones. The proposed method includes three stages: the warm-up stage, the main training stage and the fine-tuning stage. In the warm-up stage, the margin of each sample is obtained through the ranking function. In the main training stage, samples are progressively fed into the networks for training, starting from those with larger margins to those with smaller ones. Label correction is also performed in this stage. In the fine-tuning stage, the networks are retrained on the samples with corrected labels. In addition, we provide theoretical analysis to guarantee the feasibility of TRM. The experiments on two representative histopathologies image datasets show that the proposed method achieves substantial improvements over the latest Label Noise Learning (LNL) methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
611完成签到,获得积分10
2秒前
Jane完成签到 ,获得积分10
5秒前
shixinran完成签到,获得积分10
5秒前
Aimee发布了新的文献求助10
6秒前
Beton_X发布了新的文献求助30
9秒前
彭于晏应助EadonChen采纳,获得10
10秒前
smart完成签到,获得积分10
11秒前
打打应助h2o采纳,获得10
12秒前
科研通AI6.1应助虚心飞鸟采纳,获得10
12秒前
李健的小迷弟应助向阳采纳,获得10
13秒前
褚幻香发布了新的文献求助10
16秒前
范范完成签到,获得积分20
17秒前
20秒前
Yusra完成签到 ,获得积分10
21秒前
不懈奋进应助LO7pM2采纳,获得30
22秒前
23秒前
蛋挞完成签到 ,获得积分10
23秒前
向阳完成签到,获得积分10
23秒前
455完成签到,获得积分10
24秒前
向阳发布了新的文献求助10
27秒前
Akim应助柚子采纳,获得10
28秒前
大模型应助PAPA采纳,获得10
29秒前
30秒前
Hello应助科研通管家采纳,获得10
31秒前
Hilda007应助科研通管家采纳,获得10
31秒前
Hello应助科研通管家采纳,获得10
31秒前
YifanWang应助科研通管家采纳,获得10
31秒前
Hilda007应助科研通管家采纳,获得10
31秒前
CCCheny应助科研通管家采纳,获得10
31秒前
YifanWang应助科研通管家采纳,获得10
31秒前
慕青应助科研通管家采纳,获得10
31秒前
32秒前
CCCheny应助科研通管家采纳,获得10
32秒前
慕青应助科研通管家采纳,获得10
32秒前
32秒前
32秒前
深情安青应助科研通管家采纳,获得10
32秒前
32秒前
隐形曼青应助科研通管家采纳,获得100
32秒前
深情安青应助科研通管家采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771695
求助须知:如何正确求助?哪些是违规求助? 5593329
关于积分的说明 15428228
捐赠科研通 4904978
什么是DOI,文献DOI怎么找? 2639147
邀请新用户注册赠送积分活动 1587032
关于科研通互助平台的介绍 1541938