Histopathology Image Classification with Noisy Labels via The Ranking Margins

排名(信息检索) 边距(机器学习) 人工智能 计算机科学 模式识别(心理学) 机器学习 噪音(视频) 图像(数学)
作者
Zhijie Wen,Haixia Wu,Shihui Ying
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (8): 2790-2802
标识
DOI:10.1109/tmi.2024.3381775
摘要

Clinically, histopathology images always offer a golden standard for disease diagnosis. With the development of artificial intelligence, digital histopathology significantly improves the efficiency of diagnosis. Nevertheless, noisy labels are inevitable in histopathology images, which lead to poor algorithm efficiency. Curriculum learning is one of the typical methods to solve such problems. However, existing curriculum learning methods either fail to measure the training priority between difficult samples and noisy ones or need an extra clean dataset to establish a valid curriculum scheme. Therefore, a new curriculum learning paradigm is designed based on a proposed ranking function, which is named The Ranking Margins (TRM). The ranking function measures the 'distances' between samples and decision boundaries, which helps distinguish difficult samples and noisy ones. The proposed method includes three stages: the warm-up stage, the main training stage and the fine-tuning stage. In the warm-up stage, the margin of each sample is obtained through the ranking function. In the main training stage, samples are progressively fed into the networks for training, starting from those with larger margins to those with smaller ones. Label correction is also performed in this stage. In the fine-tuning stage, the networks are retrained on the samples with corrected labels. In addition, we provide theoretical analysis to guarantee the feasibility of TRM. The experiments on two representative histopathologies image datasets show that the proposed method achieves substantial improvements over the latest Label Noise Learning (LNL) methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
CipherSage应助陈陈采纳,获得10
刚刚
风中过客发布了新的文献求助10
1秒前
1秒前
1秒前
科研通AI6.1应助微光采纳,获得10
2秒前
2秒前
16发布了新的文献求助30
2秒前
小栗完成签到,获得积分10
2秒前
淡然的芷荷完成签到 ,获得积分10
3秒前
datiancaihaha发布了新的文献求助10
4秒前
三明治治治完成签到,获得积分10
4秒前
汉堡包应助昏睡的飞雪采纳,获得10
4秒前
lyu完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
王王应助谨慎的寒松采纳,获得30
5秒前
6秒前
6秒前
含糊的依白完成签到,获得积分10
6秒前
小蘑菇应助Susan采纳,获得10
8秒前
耍酷天寿发布了新的文献求助10
9秒前
Owen应助XT采纳,获得10
9秒前
bmyy完成签到,获得积分10
10秒前
10秒前
烟花应助jzt12138采纳,获得10
10秒前
嗯啊完成签到,获得积分10
11秒前
陈陈完成签到,获得积分10
11秒前
11秒前
ZTB完成签到,获得积分10
11秒前
邓佳乐完成签到,获得积分10
11秒前
归于晏发布了新的文献求助10
13秒前
13秒前
14秒前
iNk应助ZTB采纳,获得10
14秒前
15秒前
精灵梦完成签到,获得积分10
15秒前
无花果应助文静的听荷采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735420
求助须知:如何正确求助?哪些是违规求助? 5360561
关于积分的说明 15329871
捐赠科研通 4879609
什么是DOI,文献DOI怎么找? 2622093
邀请新用户注册赠送积分活动 1571250
关于科研通互助平台的介绍 1528108