亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Histopathology Image Classification with Noisy Labels via The Ranking Margins

排名(信息检索) 边距(机器学习) 人工智能 计算机科学 模式识别(心理学) 机器学习 噪音(视频) 图像(数学)
作者
Zhijie Wen,Haixia Wu,Shihui Ying
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (8): 2790-2802
标识
DOI:10.1109/tmi.2024.3381775
摘要

Clinically, histopathology images always offer a golden standard for disease diagnosis. With the development of artificial intelligence, digital histopathology significantly improves the efficiency of diagnosis. Nevertheless, noisy labels are inevitable in histopathology images, which lead to poor algorithm efficiency. Curriculum learning is one of the typical methods to solve such problems. However, existing curriculum learning methods either fail to measure the training priority between difficult samples and noisy ones or need an extra clean dataset to establish a valid curriculum scheme. Therefore, a new curriculum learning paradigm is designed based on a proposed ranking function, which is named The Ranking Margins (TRM). The ranking function measures the 'distances' between samples and decision boundaries, which helps distinguish difficult samples and noisy ones. The proposed method includes three stages: the warm-up stage, the main training stage and the fine-tuning stage. In the warm-up stage, the margin of each sample is obtained through the ranking function. In the main training stage, samples are progressively fed into the networks for training, starting from those with larger margins to those with smaller ones. Label correction is also performed in this stage. In the fine-tuning stage, the networks are retrained on the samples with corrected labels. In addition, we provide theoretical analysis to guarantee the feasibility of TRM. The experiments on two representative histopathologies image datasets show that the proposed method achieves substantial improvements over the latest Label Noise Learning (LNL) methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得50
14秒前
paradox完成签到 ,获得积分10
28秒前
1分钟前
科研顺发布了新的文献求助10
1分钟前
orixero应助科研顺采纳,获得10
1分钟前
1分钟前
1分钟前
向日葵发布了新的文献求助10
1分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
向日葵完成签到,获得积分10
2分钟前
丁老三完成签到 ,获得积分10
2分钟前
浮游应助徐露辰采纳,获得10
2分钟前
2分钟前
Cynthia完成签到 ,获得积分10
2分钟前
幽默尔蓝发布了新的文献求助10
3分钟前
下雨天就该睡大觉完成签到 ,获得积分10
3分钟前
3分钟前
aa111发布了新的文献求助10
3分钟前
yanglinhai完成签到 ,获得积分10
3分钟前
3分钟前
aa111完成签到,获得积分10
3分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
4分钟前
矮冬瓜完成签到 ,获得积分10
4分钟前
luxlili完成签到,获得积分10
5分钟前
5分钟前
秋作完成签到,获得积分10
5分钟前
我爱陶子完成签到 ,获得积分10
5分钟前
5分钟前
为你钟情完成签到 ,获得积分10
6分钟前
浮游应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463288
求助须知:如何正确求助?哪些是违规求助? 4568033
关于积分的说明 14312347
捐赠科研通 4493945
什么是DOI,文献DOI怎么找? 2461987
邀请新用户注册赠送积分活动 1450972
关于科研通互助平台的介绍 1426200