Histopathology Image Classification with Noisy Labels via The Ranking Margins

排名(信息检索) 边距(机器学习) 人工智能 计算机科学 模式识别(心理学) 机器学习 噪音(视频) 图像(数学)
作者
Zhijie Wen,Haixia Wu,Shihui Ying
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (8): 2790-2802
标识
DOI:10.1109/tmi.2024.3381775
摘要

Clinically, histopathology images always offer a golden standard for disease diagnosis. With the development of artificial intelligence, digital histopathology significantly improves the efficiency of diagnosis. Nevertheless, noisy labels are inevitable in histopathology images, which lead to poor algorithm efficiency. Curriculum learning is one of the typical methods to solve such problems. However, existing curriculum learning methods either fail to measure the training priority between difficult samples and noisy ones or need an extra clean dataset to establish a valid curriculum scheme. Therefore, a new curriculum learning paradigm is designed based on a proposed ranking function, which is named The Ranking Margins (TRM). The ranking function measures the 'distances' between samples and decision boundaries, which helps distinguish difficult samples and noisy ones. The proposed method includes three stages: the warm-up stage, the main training stage and the fine-tuning stage. In the warm-up stage, the margin of each sample is obtained through the ranking function. In the main training stage, samples are progressively fed into the networks for training, starting from those with larger margins to those with smaller ones. Label correction is also performed in this stage. In the fine-tuning stage, the networks are retrained on the samples with corrected labels. In addition, we provide theoretical analysis to guarantee the feasibility of TRM. The experiments on two representative histopathologies image datasets show that the proposed method achieves substantial improvements over the latest Label Noise Learning (LNL) methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_pnxEqZ发布了新的文献求助10
1秒前
ZYQ发布了新的文献求助10
2秒前
领导范儿应助whl_321采纳,获得10
3秒前
3秒前
橙汁完成签到 ,获得积分10
3秒前
葉要加油完成签到,获得积分10
4秒前
葉要加油发布了新的文献求助10
7秒前
weishen完成签到,获得积分0
9秒前
9秒前
ZYQ完成签到,获得积分10
10秒前
852应助liyanping采纳,获得10
11秒前
12秒前
12秒前
Lanyx完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
Eason完成签到,获得积分10
15秒前
Lanyx发布了新的文献求助10
17秒前
充电宝应助杜琦采纳,获得10
17秒前
Platinum完成签到,获得积分10
17秒前
猪猪侠发布了新的文献求助10
18秒前
19秒前
Felix发布了新的文献求助10
19秒前
anonymous发布了新的文献求助10
19秒前
anasy发布了新的文献求助10
22秒前
疯狂的向日葵完成签到,获得积分10
23秒前
LFH关注了科研通微信公众号
23秒前
大鱼完成签到,获得积分10
24秒前
小乐儿~完成签到,获得积分10
24秒前
quora发布了新的文献求助10
30秒前
丛士乔完成签到,获得积分10
31秒前
31秒前
32秒前
必发文章完成签到,获得积分10
33秒前
36秒前
dique3hao发布了新的文献求助10
36秒前
杜琦发布了新的文献求助10
37秒前
Ava应助鸿鲤采纳,获得10
38秒前
易旸完成签到,获得积分10
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967872
求助须知:如何正确求助?哪些是违规求助? 3512982
关于积分的说明 11165825
捐赠科研通 3248059
什么是DOI,文献DOI怎么找? 1794090
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578