Histopathology Image Classification with Noisy Labels via The Ranking Margins

排名(信息检索) 边距(机器学习) 人工智能 计算机科学 模式识别(心理学) 机器学习 噪音(视频) 图像(数学)
作者
Zhijie Wen,Haixia Wu,Shihui Ying
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (8): 2790-2802
标识
DOI:10.1109/tmi.2024.3381775
摘要

Clinically, histopathology images always offer a golden standard for disease diagnosis. With the development of artificial intelligence, digital histopathology significantly improves the efficiency of diagnosis. Nevertheless, noisy labels are inevitable in histopathology images, which lead to poor algorithm efficiency. Curriculum learning is one of the typical methods to solve such problems. However, existing curriculum learning methods either fail to measure the training priority between difficult samples and noisy ones or need an extra clean dataset to establish a valid curriculum scheme. Therefore, a new curriculum learning paradigm is designed based on a proposed ranking function, which is named The Ranking Margins (TRM). The ranking function measures the 'distances' between samples and decision boundaries, which helps distinguish difficult samples and noisy ones. The proposed method includes three stages: the warm-up stage, the main training stage and the fine-tuning stage. In the warm-up stage, the margin of each sample is obtained through the ranking function. In the main training stage, samples are progressively fed into the networks for training, starting from those with larger margins to those with smaller ones. Label correction is also performed in this stage. In the fine-tuning stage, the networks are retrained on the samples with corrected labels. In addition, we provide theoretical analysis to guarantee the feasibility of TRM. The experiments on two representative histopathologies image datasets show that the proposed method achieves substantial improvements over the latest Label Noise Learning (LNL) methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助谨慎建辉采纳,获得10
刚刚
zjq发布了新的文献求助10
1秒前
大个应助木今采纳,获得10
1秒前
Owen应助曦曦采纳,获得10
2秒前
2秒前
2秒前
2秒前
12131完成签到,获得积分20
3秒前
3秒前
3秒前
蓝色斑马发布了新的文献求助10
4秒前
烟花完成签到,获得积分10
4秒前
大胆傲芙发布了新的文献求助10
5秒前
马夋完成签到,获得积分10
5秒前
科研通AI2S应助健忘千雁采纳,获得10
5秒前
Jiang完成签到,获得积分10
5秒前
pups发布了新的文献求助80
5秒前
Ww发布了新的文献求助10
6秒前
烂漫的煎饼完成签到 ,获得积分10
6秒前
chixueqi完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
7秒前
鸭子发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
majf发布了新的文献求助10
8秒前
9秒前
小蘑菇应助咕嘟采纳,获得10
9秒前
9秒前
2222完成签到,获得积分10
10秒前
sen发布了新的文献求助10
10秒前
Swift168_YY发布了新的文献求助10
10秒前
哈尼完成签到,获得积分10
11秒前
弓长发布了新的文献求助30
11秒前
Ava应助顺利的奇异果采纳,获得10
11秒前
ZephyrZY完成签到,获得积分10
11秒前
情怀应助顾顾采纳,获得10
11秒前
高分求助中
Incubation and Hatchery Performance, The Devil is in the Details 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5204680
求助须知:如何正确求助?哪些是违规求助? 4383701
关于积分的说明 13650154
捐赠科研通 4241580
什么是DOI,文献DOI怎么找? 2326956
邀请新用户注册赠送积分活动 1324605
关于科研通互助平台的介绍 1276907