亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Histopathology Image Classification with Noisy Labels via The Ranking Margins

排名(信息检索) 边距(机器学习) 人工智能 计算机科学 模式识别(心理学) 机器学习 噪音(视频) 图像(数学)
作者
Zhijie Wen,Haixia Wu,Shihui Ying
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (8): 2790-2802
标识
DOI:10.1109/tmi.2024.3381775
摘要

Clinically, histopathology images always offer a golden standard for disease diagnosis. With the development of artificial intelligence, digital histopathology significantly improves the efficiency of diagnosis. Nevertheless, noisy labels are inevitable in histopathology images, which lead to poor algorithm efficiency. Curriculum learning is one of the typical methods to solve such problems. However, existing curriculum learning methods either fail to measure the training priority between difficult samples and noisy ones or need an extra clean dataset to establish a valid curriculum scheme. Therefore, a new curriculum learning paradigm is designed based on a proposed ranking function, which is named The Ranking Margins (TRM). The ranking function measures the 'distances' between samples and decision boundaries, which helps distinguish difficult samples and noisy ones. The proposed method includes three stages: the warm-up stage, the main training stage and the fine-tuning stage. In the warm-up stage, the margin of each sample is obtained through the ranking function. In the main training stage, samples are progressively fed into the networks for training, starting from those with larger margins to those with smaller ones. Label correction is also performed in this stage. In the fine-tuning stage, the networks are retrained on the samples with corrected labels. In addition, we provide theoretical analysis to guarantee the feasibility of TRM. The experiments on two representative histopathologies image datasets show that the proposed method achieves substantial improvements over the latest Label Noise Learning (LNL) methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
16秒前
李健应助ARESCI采纳,获得10
38秒前
samsahpiyaz发布了新的文献求助10
52秒前
犹豫翠萱完成签到 ,获得积分10
2分钟前
老迟到的羊完成签到 ,获得积分10
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
2分钟前
moonlight发布了新的文献求助10
2分钟前
gjq完成签到,获得积分10
3分钟前
hhuajw完成签到,获得积分10
3分钟前
烂漫的芫完成签到 ,获得积分10
4分钟前
4分钟前
爱思考的小笨笨完成签到,获得积分10
4分钟前
4分钟前
obedVL完成签到,获得积分10
4分钟前
昵称已挥发完成签到,获得积分10
4分钟前
sldragon完成签到,获得积分10
4分钟前
4分钟前
xiaoyuan发布了新的文献求助10
4分钟前
小黄还你好完成签到 ,获得积分10
5分钟前
LYL完成签到,获得积分10
5分钟前
Wei发布了新的文献求助10
5分钟前
5分钟前
群山完成签到 ,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
脑洞疼应助米兰的小铁匠采纳,获得10
6分钟前
7分钟前
7分钟前
7分钟前
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
8分钟前
gszy1975完成签到,获得积分10
9分钟前
量子星尘发布了新的文献求助10
9分钟前
SciGPT应助务实的犀牛采纳,获得10
9分钟前
冉亦完成签到,获得积分10
9分钟前
10分钟前
yhw发布了新的文献求助10
10分钟前
Jay完成签到,获得积分10
11分钟前
空里叽哇完成签到,获得积分10
12分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584704
求助须知:如何正确求助?哪些是违规求助? 4668646
关于积分的说明 14771521
捐赠科研通 4613528
什么是DOI,文献DOI怎么找? 2530193
邀请新用户注册赠送积分活动 1499072
关于科研通互助平台的介绍 1467516