已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Comparison of ARIMA boost, Prophet boost, and TSLM models in forecasting Davao City weather data

自回归积分移动平均 计量经济学 统计 计算机科学 数学 气象学 时间序列 地理
作者
J. Rogers,Tamara Cher R. Mercado,Fredelino A. Galleto
出处
期刊:Indonesian Journal of Electrical Engineering and Computer Science [Institute of Advanced Engineering and Science]
卷期号:34 (2): 1092-1092
标识
DOI:10.11591/ijeecs.v34.i2.pp1092-1101
摘要

The geography of the Philippines experiences climate variability thus, providing accurate and timely weather forecasts to the population is crucial. Climate forecasts, which are issued and disseminated by government agencies, serve as essential risk management tools. However, the country faces challenges in forecasting, further exacerbated by climate change. Thus, exploring the use of artificial intelligence has emerged as a strategy to enhance weather prediction accuracy. This research focuses on time series forecasting of rainfall, mean temperature, relative humidity, and wind speed weather data using a machine learning approach. Specifically, it aims to compare and identify the most beneficial forecasting models among autoregressive integrated moving average (ARIMA) boost, Prophet boost, and time series linear model (TSLM). It also seeks to evaluate the performance of these models using mean absolute error (MAE), mean absolute percentage error (MAPE), mean absolute scaled error (MASE), symmetric mean absolute percentage error (SMAPE), root mean squared error (RMSE), and R squared (RSQ) metrics. Results showed that the selection of the forecasting model varies based on the specific parameter under consideration, with no hyperparameter tuning in the analysis. For wind speed, ARIMA boost proves to be a favorable choice. At the same time, TSLM demonstrates effectiveness for relative humidity and mean temperature. Both ARIMA boost and TSLM exhibit strong performance for rainfall. Prophet boost consistently ranks as the least-performing model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
恰恰发布了新的文献求助10
2秒前
Akim应助阿牛奶采纳,获得10
5秒前
zyw完成签到,获得积分20
5秒前
传奇3应助ekswai采纳,获得10
6秒前
7秒前
8秒前
英俊的铭应助迷路的夏之采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得30
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
小美酱发布了新的文献求助10
11秒前
11秒前
11秒前
小瓜子发布了新的文献求助10
13秒前
共享精神应助阿克曼采纳,获得10
13秒前
wyc完成签到 ,获得积分10
14秒前
kmzzy完成签到,获得积分10
15秒前
16秒前
kkaky发布了新的文献求助10
17秒前
17秒前
馨lover发布了新的文献求助100
18秒前
漂亮白云发布了新的文献求助10
21秒前
lily完成签到,获得积分10
21秒前
feng发布了新的文献求助10
22秒前
小遇完成签到 ,获得积分10
25秒前
1234645678发布了新的文献求助10
25秒前
28秒前
馨lover完成签到,获得积分10
28秒前
28秒前
hyx9504发布了新的文献求助10
28秒前
leonork完成签到,获得积分10
30秒前
xx完成签到,获得积分10
30秒前
33秒前
小橙子发布了新的文献求助10
33秒前
33秒前
lan完成签到,获得积分10
34秒前
CodeCraft应助hu采纳,获得10
34秒前
gaobin发布了新的文献求助10
35秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466610
求助须知:如何正确求助?哪些是违规求助? 3059430
关于积分的说明 9066178
捐赠科研通 2749884
什么是DOI,文献DOI怎么找? 1508779
科研通“疑难数据库(出版商)”最低求助积分说明 697059
邀请新用户注册赠送积分活动 696883