Artificial Intelligence Application for Anti-tumor Drug Synergy Prediction

药品 计算机科学 人工智能 计算生物学 医学 药理学 生物
作者
Peng Zheng,Yanling Ding,Pengfei Zhang,Xiaolan Lv,Zepeng Li,Xiaoling Zhou,Shigao Huang
出处
期刊:Current Medicinal Chemistry [Bentham Science]
卷期号:31 (40): 6572-6585
标识
DOI:10.2174/0109298673290777240301071513
摘要

Abstract: Currently, the main therapeutic methods for cancer include surgery, radiation therapy, and chemotherapy. However, chemotherapy still plays an important role in tumor therapy. Due to the variety of pathogenic factors, the development process of tumors is complex and regulated by many factors, and the treatment of a single drug is easy to cause the human body to produce a drug-resistant phenotype to specific drugs and eventually leads to treatment failure. In the process of clinical tumor treatment, the combination of multiple drugs can produce stronger anti-tumor effects by regulating multiple mechanisms and can reduce the problem of tumor drug resistance while reducing the toxic side effects of drugs. Therefore, it is still a great challenge to construct an efficient and accurate screening method that can systematically consider the synergistic anti- tumor effects of multiple drugs. However, anti-tumor drug synergy prediction is of importance in improving cancer treatment outcomes. However, identifying effective drug combinations remains a complex and challenging task. This review provides a comprehensive overview of cancer drug synergy therapy and the application of artificial intelligence (AI) techniques in cancer drug synergy prediction. In addition, we discuss the challenges and perspectives associated with deep learning approaches. In conclusion, the review of the AI techniques' application in cancer drug synergy prediction can further advance our understanding of cancer drug synergy and provide more effective treatment plans and reasonable drug use strategies for clinical guidance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MHY发布了新的文献求助10
1秒前
3秒前
xx完成签到,获得积分10
5秒前
zhou完成签到,获得积分10
5秒前
5秒前
8秒前
8秒前
慕青应助qq1640564935采纳,获得10
8秒前
9秒前
9秒前
年年完成签到,获得积分10
10秒前
14秒前
MHY完成签到,获得积分10
14秒前
小蘑菇应助hushan53采纳,获得10
14秒前
story完成签到 ,获得积分10
14秒前
情怀应助exile采纳,获得30
16秒前
辛谷方松永旭完成签到 ,获得积分10
16秒前
HughWang完成签到,获得积分10
17秒前
天幕发布了新的文献求助10
18秒前
李成哲完成签到,获得积分10
18秒前
桐桐应助Cherubines采纳,获得10
19秒前
奥巴马发布了新的文献求助10
20秒前
20秒前
嘎嘎嘎嘎发布了新的文献求助10
20秒前
20秒前
story关注了科研通微信公众号
20秒前
归海一刀完成签到,获得积分10
22秒前
麦旋风完成签到,获得积分10
22秒前
JXL发布了新的文献求助10
23秒前
潇洒诗云发布了新的文献求助10
24秒前
25秒前
25秒前
打打应助杨家欢采纳,获得10
26秒前
26秒前
球球完成签到,获得积分20
26秒前
夏爽2023完成签到,获得积分10
30秒前
明杰发布了新的文献求助10
31秒前
球球发布了新的文献求助10
32秒前
exile完成签到,获得积分10
32秒前
看风景悠然在路完成签到,获得积分10
33秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145200
求助须知:如何正确求助?哪些是违规求助? 2796557
关于积分的说明 7820486
捐赠科研通 2452923
什么是DOI,文献DOI怎么找? 1305285
科研通“疑难数据库(出版商)”最低求助积分说明 627453
版权声明 601464