Discrete Federated Multi-behavior Recommendation for Privacy-Preserving Heterogeneous One-Class Collaborative Filtering

协同过滤 计算机科学 班级(哲学) 推荐系统 情报检索 人工智能
作者
Enyue Yang,Weike Pan,Qiang Yang,Zhong Ming
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:42 (5): 1-50 被引量:1
标识
DOI:10.1145/3652853
摘要

Recently, federated recommendation has become a research hotspot mainly because of users’ awareness of privacy in data. As a recent and important recommendation problem, in heterogeneous one-class collaborative filtering (HOCCF), each user may involve of two different types of implicit feedback, that is, examinations and purchases. So far, privacy-preserving HOCCF has received relatively little attention. Existing federated recommendation works often overlook the fact that some privacy sensitive behaviors such as purchases should be collected to ensure the basic business imperatives in e-commerce for example. Hence, the user privacy constraints can and should be relaxed while deploying a recommendation system in real scenarios. In this article, we study the federated multi-behavior recommendation problem under the assumption that purchase behaviors can be collected. Moreover, there are two additional challenges that need to be addressed when deploying federated recommendation. One is the low storage capacity for users’ devices to store all the item vectors, and the other is the low computational power for users to participate in federated learning. To release the potential of privacy-preserving HOCCF, we propose a novel framework, named discrete federated multi-behavior recommendation (DFMR), which allows the collection of the business necessary behaviors (i.e., purchases) by the server. As to reduce the storage overhead, we use discrete hashing techniques, which can compress the parameters down to 1.56% of the real-valued parameters. To further improve the computation-efficiency, we design a memorization strategy in the cache updating module to accelerate the training process. Extensive experiments on four public datasets show the superiority of our DFMR in terms of both accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鑫炜赵完成签到,获得积分10
1秒前
乘风破浪完成签到 ,获得积分0
2秒前
充电宝应助游畅采纳,获得10
6秒前
文献荒完成签到,获得积分10
6秒前
guagua完成签到 ,获得积分10
8秒前
10秒前
科研通AI6应助wlh123采纳,获得10
10秒前
12秒前
13秒前
充电宝应助桂棹兮兰桨采纳,获得10
14秒前
14秒前
聪明的破茧完成签到,获得积分10
14秒前
希望天下0贩的0应助charint采纳,获得10
15秒前
Hexagram完成签到 ,获得积分10
17秒前
fuws完成签到 ,获得积分10
18秒前
刻苦惜萍发布了新的文献求助10
18秒前
852应助欣慰立轩采纳,获得10
18秒前
轻爱完成签到,获得积分10
18秒前
安小云发布了新的文献求助10
19秒前
初遇之时最暖完成签到,获得积分10
20秒前
橘子海完成签到 ,获得积分10
21秒前
贪玩的醉柳完成签到,获得积分10
22秒前
上官若男应助刻苦惜萍采纳,获得10
24秒前
航某人完成签到,获得积分10
24秒前
凶狠的储完成签到,获得积分10
25秒前
工水发布了新的文献求助10
27秒前
四斤瓜完成签到 ,获得积分10
28秒前
yandemengxiang完成签到,获得积分10
28秒前
罗静完成签到,获得积分10
28秒前
CaoYi完成签到 ,获得积分10
28秒前
Mic给愉快的万声的求助进行了留言
30秒前
壹壹完成签到 ,获得积分10
31秒前
爱读文献的小张完成签到,获得积分10
34秒前
安小云完成签到,获得积分20
34秒前
明钟达完成签到,获得积分10
35秒前
面包树完成签到,获得积分10
37秒前
37秒前
大个应助Dirsch采纳,获得10
38秒前
xing完成签到,获得积分10
40秒前
然463完成签到 ,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304775
求助须知:如何正确求助?哪些是违规求助? 4451039
关于积分的说明 13850712
捐赠科研通 4338311
什么是DOI,文献DOI怎么找? 2381834
邀请新用户注册赠送积分活动 1376922
关于科研通互助平台的介绍 1344282