Discrete Federated Multi-behavior Recommendation for Privacy-Preserving Heterogeneous One-Class Collaborative Filtering

协同过滤 计算机科学 班级(哲学) 推荐系统 情报检索 人工智能
作者
Enyue Yang,Weike Pan,Qiang Yang,Zhong Ming
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:42 (5): 1-50 被引量:1
标识
DOI:10.1145/3652853
摘要

Recently, federated recommendation has become a research hotspot mainly because of users’ awareness of privacy in data. As a recent and important recommendation problem, in heterogeneous one-class collaborative filtering (HOCCF), each user may involve of two different types of implicit feedback, that is, examinations and purchases. So far, privacy-preserving HOCCF has received relatively little attention. Existing federated recommendation works often overlook the fact that some privacy sensitive behaviors such as purchases should be collected to ensure the basic business imperatives in e-commerce for example. Hence, the user privacy constraints can and should be relaxed while deploying a recommendation system in real scenarios. In this article, we study the federated multi-behavior recommendation problem under the assumption that purchase behaviors can be collected. Moreover, there are two additional challenges that need to be addressed when deploying federated recommendation. One is the low storage capacity for users’ devices to store all the item vectors, and the other is the low computational power for users to participate in federated learning. To release the potential of privacy-preserving HOCCF, we propose a novel framework, named discrete federated multi-behavior recommendation (DFMR), which allows the collection of the business necessary behaviors (i.e., purchases) by the server. As to reduce the storage overhead, we use discrete hashing techniques, which can compress the parameters down to 1.56% of the real-valued parameters. To further improve the computation-efficiency, we design a memorization strategy in the cache updating module to accelerate the training process. Extensive experiments on four public datasets show the superiority of our DFMR in terms of both accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
DarrenVan完成签到,获得积分10
3秒前
英俊的铭应助lk采纳,获得10
3秒前
lucky完成签到 ,获得积分10
3秒前
王国科发布了新的文献求助10
4秒前
高高的天亦完成签到 ,获得积分10
4秒前
小D发布了新的文献求助10
5秒前
村上春树的摩的完成签到 ,获得积分10
5秒前
Fox完成签到,获得积分20
6秒前
7秒前
一一完成签到 ,获得积分10
7秒前
8秒前
ccm应助科研通管家采纳,获得10
9秒前
Bio应助科研通管家采纳,获得150
9秒前
无花果应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
10秒前
ccm应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
若ruofeng应助科研通管家采纳,获得20
10秒前
dew应助科研通管家采纳,获得10
10秒前
10秒前
若ruofeng应助科研通管家采纳,获得20
10秒前
馆长应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
若ruofeng应助科研通管家采纳,获得20
10秒前
若ruofeng应助科研通管家采纳,获得20
10秒前
若ruofeng应助科研通管家采纳,获得20
10秒前
10秒前
若ruofeng应助科研通管家采纳,获得20
10秒前
若ruofeng应助科研通管家采纳,获得20
10秒前
若ruofeng应助科研通管家采纳,获得20
10秒前
今后应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得30
11秒前
11秒前
11秒前
情怀应助科研通管家采纳,获得10
11秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142180
求助须知:如何正确求助?哪些是违规求助? 4340425
关于积分的说明 13517521
捐赠科研通 4180348
什么是DOI,文献DOI怎么找? 2292405
邀请新用户注册赠送积分活动 1293003
关于科研通互助平台的介绍 1235514