Discrete Federated Multi-behavior Recommendation for Privacy-Preserving Heterogeneous One-Class Collaborative Filtering

协同过滤 计算机科学 班级(哲学) 推荐系统 情报检索 人工智能
作者
Enyue Yang,Weike Pan,Qiang Yang,Zhong Ming
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:42 (5): 1-50 被引量:1
标识
DOI:10.1145/3652853
摘要

Recently, federated recommendation has become a research hotspot mainly because of users’ awareness of privacy in data. As a recent and important recommendation problem, in heterogeneous one-class collaborative filtering (HOCCF), each user may involve of two different types of implicit feedback, that is, examinations and purchases. So far, privacy-preserving HOCCF has received relatively little attention. Existing federated recommendation works often overlook the fact that some privacy sensitive behaviors such as purchases should be collected to ensure the basic business imperatives in e-commerce for example. Hence, the user privacy constraints can and should be relaxed while deploying a recommendation system in real scenarios. In this article, we study the federated multi-behavior recommendation problem under the assumption that purchase behaviors can be collected. Moreover, there are two additional challenges that need to be addressed when deploying federated recommendation. One is the low storage capacity for users’ devices to store all the item vectors, and the other is the low computational power for users to participate in federated learning. To release the potential of privacy-preserving HOCCF, we propose a novel framework, named discrete federated multi-behavior recommendation (DFMR), which allows the collection of the business necessary behaviors (i.e., purchases) by the server. As to reduce the storage overhead, we use discrete hashing techniques, which can compress the parameters down to 1.56% of the real-valued parameters. To further improve the computation-efficiency, we design a memorization strategy in the cache updating module to accelerate the training process. Extensive experiments on four public datasets show the superiority of our DFMR in terms of both accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
nous完成签到,获得积分10
1秒前
11完成签到,获得积分10
2秒前
西西完成签到,获得积分10
2秒前
2秒前
Wang_ZiMo发布了新的文献求助10
3秒前
海绵宝宝的做饭铲完成签到,获得积分10
3秒前
3秒前
yuuka发布了新的文献求助10
4秒前
Wang驳回了李健应助
4秒前
微笑笑卉发布了新的文献求助10
5秒前
科研通AI6应助狂野大雄鹰采纳,获得10
7秒前
zwangxia完成签到,获得积分10
8秒前
9秒前
Xuz完成签到 ,获得积分10
10秒前
谢123完成签到 ,获得积分10
10秒前
10秒前
hahage完成签到,获得积分10
12秒前
12秒前
Akim应助科研通管家采纳,获得10
12秒前
tcf应助科研通管家采纳,获得10
12秒前
源源完成签到 ,获得积分10
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
Akim应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得30
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
英姑应助科研通管家采纳,获得10
13秒前
natmed应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
无花果应助paz_1010采纳,获得10
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
Ava应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
Ava应助科研通管家采纳,获得10
14秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379192
求助须知:如何正确求助?哪些是违规求助? 4503605
关于积分的说明 14016048
捐赠科研通 4412336
什么是DOI,文献DOI怎么找? 2423761
邀请新用户注册赠送积分活动 1416652
关于科研通互助平台的介绍 1394188