亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Discrete Federated Multi-behavior Recommendation for Privacy-Preserving Heterogeneous One-Class Collaborative Filtering

协同过滤 计算机科学 班级(哲学) 推荐系统 情报检索 人工智能
作者
Enyue Yang,Weike Pan,Qiang Yang,Zhong Ming
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:42 (5): 1-50 被引量:1
标识
DOI:10.1145/3652853
摘要

Recently, federated recommendation has become a research hotspot mainly because of users’ awareness of privacy in data. As a recent and important recommendation problem, in heterogeneous one-class collaborative filtering (HOCCF), each user may involve of two different types of implicit feedback, that is, examinations and purchases. So far, privacy-preserving HOCCF has received relatively little attention. Existing federated recommendation works often overlook the fact that some privacy sensitive behaviors such as purchases should be collected to ensure the basic business imperatives in e-commerce for example. Hence, the user privacy constraints can and should be relaxed while deploying a recommendation system in real scenarios. In this article, we study the federated multi-behavior recommendation problem under the assumption that purchase behaviors can be collected. Moreover, there are two additional challenges that need to be addressed when deploying federated recommendation. One is the low storage capacity for users’ devices to store all the item vectors, and the other is the low computational power for users to participate in federated learning. To release the potential of privacy-preserving HOCCF, we propose a novel framework, named discrete federated multi-behavior recommendation (DFMR), which allows the collection of the business necessary behaviors (i.e., purchases) by the server. As to reduce the storage overhead, we use discrete hashing techniques, which can compress the parameters down to 1.56% of the real-valued parameters. To further improve the computation-efficiency, we design a memorization strategy in the cache updating module to accelerate the training process. Extensive experiments on four public datasets show the superiority of our DFMR in terms of both accuracy and efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天发布了新的文献求助10
1秒前
maolao发布了新的文献求助10
3秒前
生动的豆芽完成签到 ,获得积分10
5秒前
天天完成签到,获得积分10
9秒前
16秒前
后陡门小学生完成签到 ,获得积分10
17秒前
18秒前
19秒前
小华完成签到 ,获得积分10
20秒前
弋鱼发布了新的文献求助10
20秒前
领导范儿应助maolao采纳,获得10
26秒前
26秒前
Hello应助司空天德采纳,获得10
27秒前
千寻完成签到,获得积分0
29秒前
Lizhiiiy完成签到,获得积分20
35秒前
顺利的璎完成签到 ,获得积分10
36秒前
壮观沉鱼完成签到 ,获得积分10
38秒前
40秒前
吴雪完成签到 ,获得积分10
42秒前
大胆的碧菡完成签到,获得积分10
44秒前
maolao完成签到,获得积分10
46秒前
JamesPei应助科研通管家采纳,获得10
46秒前
46秒前
荷兰香猪完成签到,获得积分10
48秒前
蛋挞完成签到 ,获得积分10
56秒前
56秒前
59秒前
王王源完成签到,获得积分10
1分钟前
慕青应助非著名卷心菜采纳,获得50
1分钟前
开心的大米完成签到,获得积分10
1分钟前
罗健完成签到 ,获得积分0
1分钟前
耍酷的鹰完成签到,获得积分10
1分钟前
Yuang完成签到 ,获得积分10
1分钟前
111发布了新的文献求助30
1分钟前
hyf完成签到,获得积分10
1分钟前
1分钟前
1分钟前
是个哑巴发布了新的文献求助10
1分钟前
呵呵发布了新的文献求助20
1分钟前
爆米花应助是个哑巴采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657768
求助须知:如何正确求助?哪些是违规求助? 4812247
关于积分的说明 15080301
捐赠科研通 4815972
什么是DOI,文献DOI怎么找? 2577008
邀请新用户注册赠送积分活动 1532019
关于科研通互助平台的介绍 1490548