Discrete Federated Multi-behavior Recommendation for Privacy-Preserving Heterogeneous One-Class Collaborative Filtering

协同过滤 计算机科学 班级(哲学) 推荐系统 情报检索 人工智能
作者
Enyue Yang,Weike Pan,Qiang Yang,Zhong Ming
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:42 (5): 1-50 被引量:1
标识
DOI:10.1145/3652853
摘要

Recently, federated recommendation has become a research hotspot mainly because of users’ awareness of privacy in data. As a recent and important recommendation problem, in heterogeneous one-class collaborative filtering (HOCCF), each user may involve of two different types of implicit feedback, that is, examinations and purchases. So far, privacy-preserving HOCCF has received relatively little attention. Existing federated recommendation works often overlook the fact that some privacy sensitive behaviors such as purchases should be collected to ensure the basic business imperatives in e-commerce for example. Hence, the user privacy constraints can and should be relaxed while deploying a recommendation system in real scenarios. In this article, we study the federated multi-behavior recommendation problem under the assumption that purchase behaviors can be collected. Moreover, there are two additional challenges that need to be addressed when deploying federated recommendation. One is the low storage capacity for users’ devices to store all the item vectors, and the other is the low computational power for users to participate in federated learning. To release the potential of privacy-preserving HOCCF, we propose a novel framework, named discrete federated multi-behavior recommendation (DFMR), which allows the collection of the business necessary behaviors (i.e., purchases) by the server. As to reduce the storage overhead, we use discrete hashing techniques, which can compress the parameters down to 1.56% of the real-valued parameters. To further improve the computation-efficiency, we design a memorization strategy in the cache updating module to accelerate the training process. Extensive experiments on four public datasets show the superiority of our DFMR in terms of both accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ChenYifei完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
Lucas应助来日方长采纳,获得10
1秒前
chang发布了新的文献求助10
1秒前
小巫发布了新的文献求助10
2秒前
周娅敏发布了新的文献求助10
3秒前
华仔应助答辩采纳,获得10
3秒前
caixiayin发布了新的文献求助10
3秒前
3秒前
威武的冷风关注了科研通微信公众号
4秒前
4秒前
4秒前
4秒前
5秒前
科研通AI2S应助奋斗若风采纳,获得10
5秒前
ly发布了新的文献求助10
5秒前
6秒前
xiang完成签到,获得积分10
6秒前
李爱国应助迷恋采纳,获得10
6秒前
在摆烂的dog完成签到,获得积分10
7秒前
星辰大海应助刘源采纳,获得10
7秒前
小巫完成签到,获得积分10
8秒前
ironsilica完成签到,获得积分10
8秒前
土豪的土豆完成签到 ,获得积分10
8秒前
orixero应助风趣的鸡翅采纳,获得10
9秒前
独步旋碟发布了新的文献求助10
9秒前
prime完成签到,获得积分10
9秒前
李木子完成签到 ,获得积分10
9秒前
9秒前
林登万完成签到,获得积分10
9秒前
hj木秀于林完成签到,获得积分10
9秒前
11秒前
风华正茂发布了新的文献求助10
11秒前
11秒前
SOO应助sx采纳,获得10
12秒前
Superman完成签到,获得积分10
13秒前
13秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650