Discrete Federated Multi-behavior Recommendation for Privacy-Preserving Heterogeneous One-Class Collaborative Filtering

协同过滤 计算机科学 班级(哲学) 推荐系统 情报检索 人工智能
作者
Enyue Yang,Weike Pan,Qiang Yang,Zhong Ming
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:42 (5): 1-50 被引量:1
标识
DOI:10.1145/3652853
摘要

Recently, federated recommendation has become a research hotspot mainly because of users’ awareness of privacy in data. As a recent and important recommendation problem, in heterogeneous one-class collaborative filtering (HOCCF), each user may involve of two different types of implicit feedback, that is, examinations and purchases. So far, privacy-preserving HOCCF has received relatively little attention. Existing federated recommendation works often overlook the fact that some privacy sensitive behaviors such as purchases should be collected to ensure the basic business imperatives in e-commerce for example. Hence, the user privacy constraints can and should be relaxed while deploying a recommendation system in real scenarios. In this article, we study the federated multi-behavior recommendation problem under the assumption that purchase behaviors can be collected. Moreover, there are two additional challenges that need to be addressed when deploying federated recommendation. One is the low storage capacity for users’ devices to store all the item vectors, and the other is the low computational power for users to participate in federated learning. To release the potential of privacy-preserving HOCCF, we propose a novel framework, named discrete federated multi-behavior recommendation (DFMR), which allows the collection of the business necessary behaviors (i.e., purchases) by the server. As to reduce the storage overhead, we use discrete hashing techniques, which can compress the parameters down to 1.56% of the real-valued parameters. To further improve the computation-efficiency, we design a memorization strategy in the cache updating module to accelerate the training process. Extensive experiments on four public datasets show the superiority of our DFMR in terms of both accuracy and efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzsossos完成签到,获得积分10
刚刚
三七发布了新的文献求助10
刚刚
四月一日发布了新的文献求助10
刚刚
Rixxed发布了新的文献求助10
1秒前
田様应助燕儿采纳,获得10
1秒前
2秒前
杨皓婷发布了新的文献求助10
2秒前
嘉佳伽应助凯凯采纳,获得10
2秒前
丰富靖琪完成签到 ,获得积分10
2秒前
Hanoi347应助凯凯采纳,获得10
2秒前
一一应助凯凯采纳,获得10
3秒前
顾矜应助VC采纳,获得10
3秒前
3秒前
琲珂发布了新的文献求助10
3秒前
我是真人完成签到,获得积分10
4秒前
饱满的煎饼完成签到,获得积分10
4秒前
研友_LpvElZ完成签到,获得积分10
6秒前
DYZ完成签到,获得积分10
6秒前
zzsossos发布了新的文献求助10
6秒前
所所应助科研小白采纳,获得20
6秒前
LIYI完成签到,获得积分10
7秒前
天真的马里奥完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
疯狂的战斗机关注了科研通微信公众号
7秒前
7秒前
小吉麻麻完成签到,获得积分10
7秒前
8秒前
炙热小小完成签到,获得积分10
9秒前
9秒前
大个应助正正采纳,获得10
9秒前
李健应助一一采纳,获得10
10秒前
10秒前
11秒前
若水发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
今后应助感动城采纳,获得10
12秒前
霁星河完成签到,获得积分10
12秒前
Twonej应助shilong.yang采纳,获得10
13秒前
琲珂完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653486
求助须知:如何正确求助?哪些是违规求助? 4790016
关于积分的说明 15064423
捐赠科研通 4812137
什么是DOI,文献DOI怎么找? 2574306
邀请新用户注册赠送积分活动 1529926
关于科研通互助平台的介绍 1488661