Discrete Federated Multi-behavior Recommendation for Privacy-Preserving Heterogeneous One-Class Collaborative Filtering

协同过滤 计算机科学 班级(哲学) 推荐系统 情报检索 人工智能
作者
Enyue Yang,Weike Pan,Qiang Yang,Zhong Ming
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:42 (5): 1-50 被引量:1
标识
DOI:10.1145/3652853
摘要

Recently, federated recommendation has become a research hotspot mainly because of users’ awareness of privacy in data. As a recent and important recommendation problem, in heterogeneous one-class collaborative filtering (HOCCF), each user may involve of two different types of implicit feedback, that is, examinations and purchases. So far, privacy-preserving HOCCF has received relatively little attention. Existing federated recommendation works often overlook the fact that some privacy sensitive behaviors such as purchases should be collected to ensure the basic business imperatives in e-commerce for example. Hence, the user privacy constraints can and should be relaxed while deploying a recommendation system in real scenarios. In this article, we study the federated multi-behavior recommendation problem under the assumption that purchase behaviors can be collected. Moreover, there are two additional challenges that need to be addressed when deploying federated recommendation. One is the low storage capacity for users’ devices to store all the item vectors, and the other is the low computational power for users to participate in federated learning. To release the potential of privacy-preserving HOCCF, we propose a novel framework, named discrete federated multi-behavior recommendation (DFMR), which allows the collection of the business necessary behaviors (i.e., purchases) by the server. As to reduce the storage overhead, we use discrete hashing techniques, which can compress the parameters down to 1.56% of the real-valued parameters. To further improve the computation-efficiency, we design a memorization strategy in the cache updating module to accelerate the training process. Extensive experiments on four public datasets show the superiority of our DFMR in terms of both accuracy and efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狂野萤给abby的求助进行了留言
刚刚
Sakurasamada完成签到,获得积分10
刚刚
jiejie发布了新的文献求助10
1秒前
1秒前
lyl发布了新的文献求助10
1秒前
董嘉景完成签到,获得积分10
2秒前
Ber发布了新的文献求助10
2秒前
丁言笑发布了新的文献求助10
2秒前
早日成发布了新的文献求助10
2秒前
2秒前
冯梦颖发布了新的文献求助10
2秒前
QIQI发布了新的文献求助10
3秒前
4秒前
4秒前
Lii开心发布了新的文献求助30
6秒前
6秒前
7秒前
深情安青应助开朗的幻桃采纳,获得10
8秒前
耍酷问兰发布了新的文献求助10
9秒前
111完成签到,获得积分10
9秒前
9秒前
cola121发布了新的文献求助10
9秒前
宋宋宋2完成签到,获得积分10
10秒前
jelly10发布了新的文献求助30
10秒前
Lucas应助失眠的夏柳采纳,获得10
11秒前
打打应助撖堡包采纳,获得30
11秒前
laruijoint完成签到,获得积分10
12秒前
超级幼旋应助迷路的夏之采纳,获得10
12秒前
13秒前
zjtttt发布了新的文献求助10
13秒前
在水一方应助jiejie采纳,获得10
13秒前
13秒前
科目三应助拼搏幻翠采纳,获得50
14秒前
14秒前
14秒前
晟sheng完成签到 ,获得积分10
14秒前
clyhg发布了新的文献求助10
14秒前
科研通AI6应助南西采纳,获得10
14秒前
lll发布了新的文献求助10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594359
求助须知:如何正确求助?哪些是违规求助? 4680082
关于积分的说明 14812808
捐赠科研通 4646997
什么是DOI,文献DOI怎么找? 2534901
邀请新用户注册赠送积分活动 1502862
关于科研通互助平台的介绍 1469514