Discrete Federated Multi-behavior Recommendation for Privacy-Preserving Heterogeneous One-Class Collaborative Filtering

协同过滤 计算机科学 班级(哲学) 推荐系统 情报检索 人工智能
作者
Enyue Yang,Weike Pan,Qiang Yang,Zhong Ming
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:42 (5): 1-50 被引量:1
标识
DOI:10.1145/3652853
摘要

Recently, federated recommendation has become a research hotspot mainly because of users’ awareness of privacy in data. As a recent and important recommendation problem, in heterogeneous one-class collaborative filtering (HOCCF), each user may involve of two different types of implicit feedback, that is, examinations and purchases. So far, privacy-preserving HOCCF has received relatively little attention. Existing federated recommendation works often overlook the fact that some privacy sensitive behaviors such as purchases should be collected to ensure the basic business imperatives in e-commerce for example. Hence, the user privacy constraints can and should be relaxed while deploying a recommendation system in real scenarios. In this article, we study the federated multi-behavior recommendation problem under the assumption that purchase behaviors can be collected. Moreover, there are two additional challenges that need to be addressed when deploying federated recommendation. One is the low storage capacity for users’ devices to store all the item vectors, and the other is the low computational power for users to participate in federated learning. To release the potential of privacy-preserving HOCCF, we propose a novel framework, named discrete federated multi-behavior recommendation (DFMR), which allows the collection of the business necessary behaviors (i.e., purchases) by the server. As to reduce the storage overhead, we use discrete hashing techniques, which can compress the parameters down to 1.56% of the real-valued parameters. To further improve the computation-efficiency, we design a memorization strategy in the cache updating module to accelerate the training process. Extensive experiments on four public datasets show the superiority of our DFMR in terms of both accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机灵瑛完成签到,获得积分10
1秒前
qq发布了新的文献求助10
1秒前
深情安青应助糊涂的孤丝采纳,获得20
2秒前
2秒前
彭于晏应助忆枫采纳,获得10
2秒前
科研通AI5应助Carly采纳,获得30
3秒前
3秒前
123完成签到,获得积分10
3秒前
3秒前
momo完成签到,获得积分10
3秒前
szmsnail完成签到,获得积分10
4秒前
lwj完成签到,获得积分10
4秒前
自由的信仰完成签到,获得积分10
4秒前
YB完成签到,获得积分10
6秒前
淡定的健柏完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
朴实以松完成签到,获得积分10
8秒前
典雅的静完成签到,获得积分10
8秒前
8秒前
shuang完成签到,获得积分10
9秒前
何晶晶完成签到 ,获得积分10
11秒前
个性的雪旋完成签到 ,获得积分10
11秒前
香蕉觅云应助可靠的寒风采纳,获得10
12秒前
笑点低的小天鹅完成签到,获得积分10
12秒前
ChaseY完成签到,获得积分10
12秒前
半颗糖完成签到,获得积分10
12秒前
阿白完成签到 ,获得积分10
12秒前
12秒前
土豆菜卷完成签到,获得积分10
13秒前
鸣笛应助调皮平松采纳,获得10
13秒前
在水一方应助无语的安卉采纳,获得10
14秒前
faiting完成签到,获得积分10
14秒前
15秒前
16秒前
今昔完成签到,获得积分10
16秒前
尚白swqd发布了新的文献求助10
16秒前
土豆菜卷发布了新的文献求助30
16秒前
爆米花应助木木采纳,获得10
17秒前
18秒前
含蓄世界完成签到,获得积分10
18秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4598273
求助须知:如何正确求助?哪些是违规求助? 4009452
关于积分的说明 12411277
捐赠科研通 3688841
什么是DOI,文献DOI怎么找? 2033499
邀请新用户注册赠送积分活动 1066749
科研通“疑难数据库(出版商)”最低求助积分说明 951856