已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Discrete Federated Multi-behavior Recommendation for Privacy-Preserving Heterogeneous One-Class Collaborative Filtering

协同过滤 计算机科学 班级(哲学) 推荐系统 情报检索 人工智能
作者
Enyue Yang,Weike Pan,Qiang Yang,Zhong Ming
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:42 (5): 1-50 被引量:1
标识
DOI:10.1145/3652853
摘要

Recently, federated recommendation has become a research hotspot mainly because of users’ awareness of privacy in data. As a recent and important recommendation problem, in heterogeneous one-class collaborative filtering (HOCCF), each user may involve of two different types of implicit feedback, that is, examinations and purchases. So far, privacy-preserving HOCCF has received relatively little attention. Existing federated recommendation works often overlook the fact that some privacy sensitive behaviors such as purchases should be collected to ensure the basic business imperatives in e-commerce for example. Hence, the user privacy constraints can and should be relaxed while deploying a recommendation system in real scenarios. In this article, we study the federated multi-behavior recommendation problem under the assumption that purchase behaviors can be collected. Moreover, there are two additional challenges that need to be addressed when deploying federated recommendation. One is the low storage capacity for users’ devices to store all the item vectors, and the other is the low computational power for users to participate in federated learning. To release the potential of privacy-preserving HOCCF, we propose a novel framework, named discrete federated multi-behavior recommendation (DFMR), which allows the collection of the business necessary behaviors (i.e., purchases) by the server. As to reduce the storage overhead, we use discrete hashing techniques, which can compress the parameters down to 1.56% of the real-valued parameters. To further improve the computation-efficiency, we design a memorization strategy in the cache updating module to accelerate the training process. Extensive experiments on four public datasets show the superiority of our DFMR in terms of both accuracy and efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
浮游应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
pual应助科研通管家采纳,获得10
2秒前
pual应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
pual应助科研通管家采纳,获得10
3秒前
孙泽一发布了新的文献求助10
3秒前
科研通AI6应助一口蛋黄酥采纳,获得10
4秒前
5秒前
5秒前
6秒前
舒适若风完成签到,获得积分10
6秒前
tingting发布了新的文献求助10
10秒前
caiji发布了新的文献求助10
13秒前
shizi发布了新的文献求助10
13秒前
舒适若风发布了新的文献求助20
13秒前
15秒前
若枫完成签到,获得积分10
17秒前
聪慧不二完成签到 ,获得积分10
17秒前
斯文紫菜完成签到 ,获得积分10
19秒前
旺旺仙貝发布了新的文献求助10
23秒前
23秒前
怪僻完成签到 ,获得积分10
23秒前
25秒前
西域卧虎完成签到 ,获得积分10
26秒前
科研通AI6应助夏小胖采纳,获得10
26秒前
冷傲孱发布了新的文献求助10
27秒前
29秒前
29秒前
王某完成签到 ,获得积分10
31秒前
鈮宝完成签到 ,获得积分10
32秒前
医疗废物专用车乘客完成签到,获得积分10
32秒前
NexusExplorer应助冷傲孱采纳,获得10
33秒前
语嘘嘘发布了新的文献求助10
34秒前
35秒前
36秒前
晴偏好发布了新的文献求助10
36秒前
yuan完成签到,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498024
求助须知:如何正确求助?哪些是违规求助? 4595410
关于积分的说明 14449038
捐赠科研通 4528074
什么是DOI,文献DOI怎么找? 2481355
邀请新用户注册赠送积分活动 1465549
关于科研通互助平台的介绍 1438271