已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Discrete Federated Multi-behavior Recommendation for Privacy-Preserving Heterogeneous One-Class Collaborative Filtering

协同过滤 计算机科学 班级(哲学) 推荐系统 情报检索 人工智能
作者
Enyue Yang,Weike Pan,Qiang Yang,Zhong Ming
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:42 (5): 1-50 被引量:1
标识
DOI:10.1145/3652853
摘要

Recently, federated recommendation has become a research hotspot mainly because of users’ awareness of privacy in data. As a recent and important recommendation problem, in heterogeneous one-class collaborative filtering (HOCCF), each user may involve of two different types of implicit feedback, that is, examinations and purchases. So far, privacy-preserving HOCCF has received relatively little attention. Existing federated recommendation works often overlook the fact that some privacy sensitive behaviors such as purchases should be collected to ensure the basic business imperatives in e-commerce for example. Hence, the user privacy constraints can and should be relaxed while deploying a recommendation system in real scenarios. In this article, we study the federated multi-behavior recommendation problem under the assumption that purchase behaviors can be collected. Moreover, there are two additional challenges that need to be addressed when deploying federated recommendation. One is the low storage capacity for users’ devices to store all the item vectors, and the other is the low computational power for users to participate in federated learning. To release the potential of privacy-preserving HOCCF, we propose a novel framework, named discrete federated multi-behavior recommendation (DFMR), which allows the collection of the business necessary behaviors (i.e., purchases) by the server. As to reduce the storage overhead, we use discrete hashing techniques, which can compress the parameters down to 1.56% of the real-valued parameters. To further improve the computation-efficiency, we design a memorization strategy in the cache updating module to accelerate the training process. Extensive experiments on four public datasets show the superiority of our DFMR in terms of both accuracy and efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li发布了新的文献求助10
1秒前
柯柯啦啦完成签到,获得积分10
1秒前
addd完成签到,获得积分10
2秒前
景C完成签到 ,获得积分10
5秒前
王富贵完成签到,获得积分10
6秒前
寒梅恋雪完成签到 ,获得积分10
6秒前
XiaoliangXue完成签到,获得积分20
7秒前
fufu完成签到,获得积分10
7秒前
无限猫咪完成签到,获得积分10
8秒前
科研通AI6应助无限猫咪采纳,获得10
14秒前
昵称完成签到,获得积分0
16秒前
18秒前
斯文败类应助科研通管家采纳,获得10
20秒前
今后应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
顾矜应助科研通管家采纳,获得10
20秒前
华仔应助科研通管家采纳,获得10
20秒前
21秒前
moon完成签到 ,获得积分10
21秒前
子车茗应助望远Arena采纳,获得30
22秒前
临子完成签到,获得积分10
26秒前
111完成签到 ,获得积分10
27秒前
小龙完成签到,获得积分10
29秒前
30秒前
奋斗慕凝完成签到 ,获得积分10
31秒前
英俊的铭应助杨杨杨采纳,获得10
36秒前
小姚姚完成签到,获得积分10
36秒前
Neyou发布了新的文献求助10
36秒前
纪富完成签到 ,获得积分10
39秒前
41秒前
hehe完成签到,获得积分20
42秒前
大鼻子的新四岁完成签到,获得积分10
45秒前
yuan完成签到,获得积分10
45秒前
三千完成签到,获得积分10
47秒前
hehe发布了新的文献求助10
47秒前
酷波er应助kk采纳,获得10
53秒前
搬砖王发布了新的文献求助10
54秒前
55秒前
小葛完成签到,获得积分10
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616976
求助须知:如何正确求助?哪些是违规求助? 4701321
关于积分的说明 14913230
捐赠科研通 4747317
什么是DOI,文献DOI怎么找? 2549156
邀请新用户注册赠送积分活动 1512289
关于科研通互助平台的介绍 1474049