Discrete Federated Multi-behavior Recommendation for Privacy-Preserving Heterogeneous One-Class Collaborative Filtering

协同过滤 计算机科学 班级(哲学) 推荐系统 情报检索 人工智能
作者
Enyue Yang,Weike Pan,Qiang Yang,Zhong Ming
出处
期刊:ACM Transactions on Information Systems 卷期号:42 (5): 1-50 被引量:1
标识
DOI:10.1145/3652853
摘要

Recently, federated recommendation has become a research hotspot mainly because of users’ awareness of privacy in data. As a recent and important recommendation problem, in heterogeneous one-class collaborative filtering (HOCCF), each user may involve of two different types of implicit feedback, that is, examinations and purchases. So far, privacy-preserving HOCCF has received relatively little attention. Existing federated recommendation works often overlook the fact that some privacy sensitive behaviors such as purchases should be collected to ensure the basic business imperatives in e-commerce for example. Hence, the user privacy constraints can and should be relaxed while deploying a recommendation system in real scenarios. In this article, we study the federated multi-behavior recommendation problem under the assumption that purchase behaviors can be collected. Moreover, there are two additional challenges that need to be addressed when deploying federated recommendation. One is the low storage capacity for users’ devices to store all the item vectors, and the other is the low computational power for users to participate in federated learning. To release the potential of privacy-preserving HOCCF, we propose a novel framework, named discrete federated multi-behavior recommendation (DFMR), which allows the collection of the business necessary behaviors (i.e., purchases) by the server. As to reduce the storage overhead, we use discrete hashing techniques, which can compress the parameters down to 1.56% of the real-valued parameters. To further improve the computation-efficiency, we design a memorization strategy in the cache updating module to accelerate the training process. Extensive experiments on four public datasets show the superiority of our DFMR in terms of both accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
俏皮大地完成签到 ,获得积分10
刚刚
LLL发布了新的文献求助10
刚刚
共享精神应助卡卡采纳,获得10
1秒前
1秒前
1秒前
1秒前
大菠萝发布了新的文献求助10
1秒前
HEIKU应助帅酷的小刺猬采纳,获得10
2秒前
深情的嘉熙完成签到,获得积分10
2秒前
顺利涵菡完成签到,获得积分20
2秒前
斯文败类应助Jack采纳,获得10
2秒前
2秒前
狂野觅云发布了新的文献求助10
3秒前
wanci应助yyy采纳,获得10
3秒前
Abao发布了新的文献求助10
4秒前
无花果应助jagger采纳,获得10
4秒前
旺大财发布了新的文献求助10
4秒前
tanbao完成签到,获得积分10
5秒前
共享精神应助MHB采纳,获得50
5秒前
美丽小蕾发布了新的文献求助10
5秒前
anan发布了新的文献求助10
5秒前
goodgoodstudy发布了新的文献求助10
5秒前
5秒前
huifang完成签到,获得积分10
5秒前
yan儿完成签到,获得积分10
6秒前
7秒前
Dipsy完成签到,获得积分10
7秒前
8秒前
英姑应助狂野觅云采纳,获得10
8秒前
晶晶妹妹完成签到,获得积分10
9秒前
黑妖完成签到,获得积分10
9秒前
9秒前
糊糊完成签到,获得积分10
9秒前
温婉的荷花完成签到,获得积分10
10秒前
10秒前
123发布了新的文献求助10
10秒前
11秒前
俭朴的明轩完成签到,获得积分20
11秒前
张童鞋完成签到 ,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762