Discrete Federated Multi-behavior Recommendation for Privacy-Preserving Heterogeneous One-Class Collaborative Filtering

协同过滤 计算机科学 班级(哲学) 推荐系统 情报检索 人工智能
作者
Enyue Yang,Weike Pan,Qiang Yang,Zhong Ming
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:42 (5): 1-50 被引量:1
标识
DOI:10.1145/3652853
摘要

Recently, federated recommendation has become a research hotspot mainly because of users’ awareness of privacy in data. As a recent and important recommendation problem, in heterogeneous one-class collaborative filtering (HOCCF), each user may involve of two different types of implicit feedback, that is, examinations and purchases. So far, privacy-preserving HOCCF has received relatively little attention. Existing federated recommendation works often overlook the fact that some privacy sensitive behaviors such as purchases should be collected to ensure the basic business imperatives in e-commerce for example. Hence, the user privacy constraints can and should be relaxed while deploying a recommendation system in real scenarios. In this article, we study the federated multi-behavior recommendation problem under the assumption that purchase behaviors can be collected. Moreover, there are two additional challenges that need to be addressed when deploying federated recommendation. One is the low storage capacity for users’ devices to store all the item vectors, and the other is the low computational power for users to participate in federated learning. To release the potential of privacy-preserving HOCCF, we propose a novel framework, named discrete federated multi-behavior recommendation (DFMR), which allows the collection of the business necessary behaviors (i.e., purchases) by the server. As to reduce the storage overhead, we use discrete hashing techniques, which can compress the parameters down to 1.56% of the real-valued parameters. To further improve the computation-efficiency, we design a memorization strategy in the cache updating module to accelerate the training process. Extensive experiments on four public datasets show the superiority of our DFMR in terms of both accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
玻色发布了新的文献求助10
1秒前
柳云风发布了新的文献求助20
2秒前
脑洞疼应助yunshui采纳,获得10
3秒前
17发布了新的文献求助10
3秒前
OOO驳回了归尘应助
3秒前
JamesPei应助最后一个天才采纳,获得30
3秒前
3秒前
东东发布了新的文献求助10
3秒前
马里奥完成签到,获得积分10
4秒前
5秒前
wuliqun应助魅影采纳,获得10
5秒前
7秒前
我是老大应助666采纳,获得10
7秒前
情怀应助111采纳,获得10
7秒前
7秒前
英俊的铭应助HJJHJH采纳,获得10
7秒前
8秒前
8秒前
9秒前
123123完成签到 ,获得积分10
10秒前
李不笑发布了新的文献求助10
10秒前
11秒前
牛牛的牛牛完成签到 ,获得积分10
11秒前
由醉香完成签到 ,获得积分10
12秒前
mengdewen发布了新的文献求助10
12秒前
12秒前
CHN发布了新的文献求助10
12秒前
13秒前
mnc发布了新的文献求助10
13秒前
lllx完成签到,获得积分10
14秒前
5yy发布了新的文献求助10
14秒前
14秒前
Miracle完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
段皖顺完成签到 ,获得积分10
16秒前
皮卡完成签到 ,获得积分10
16秒前
captain完成签到,获得积分10
17秒前
李健的小迷弟应助C1ng采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420085
求助须知:如何正确求助?哪些是违规求助? 4535286
关于积分的说明 14149145
捐赠科研通 4452250
什么是DOI,文献DOI怎么找? 2442070
邀请新用户注册赠送积分活动 1433606
关于科研通互助平台的介绍 1410850