Discrete Federated Multi-behavior Recommendation for Privacy-Preserving Heterogeneous One-Class Collaborative Filtering

协同过滤 计算机科学 班级(哲学) 推荐系统 情报检索 人工智能
作者
Enyue Yang,Weike Pan,Qiang Yang,Zhong Ming
出处
期刊:ACM Transactions on Information Systems 卷期号:42 (5): 1-50 被引量:1
标识
DOI:10.1145/3652853
摘要

Recently, federated recommendation has become a research hotspot mainly because of users’ awareness of privacy in data. As a recent and important recommendation problem, in heterogeneous one-class collaborative filtering (HOCCF), each user may involve of two different types of implicit feedback, that is, examinations and purchases. So far, privacy-preserving HOCCF has received relatively little attention. Existing federated recommendation works often overlook the fact that some privacy sensitive behaviors such as purchases should be collected to ensure the basic business imperatives in e-commerce for example. Hence, the user privacy constraints can and should be relaxed while deploying a recommendation system in real scenarios. In this article, we study the federated multi-behavior recommendation problem under the assumption that purchase behaviors can be collected. Moreover, there are two additional challenges that need to be addressed when deploying federated recommendation. One is the low storage capacity for users’ devices to store all the item vectors, and the other is the low computational power for users to participate in federated learning. To release the potential of privacy-preserving HOCCF, we propose a novel framework, named discrete federated multi-behavior recommendation (DFMR), which allows the collection of the business necessary behaviors (i.e., purchases) by the server. As to reduce the storage overhead, we use discrete hashing techniques, which can compress the parameters down to 1.56% of the real-valued parameters. To further improve the computation-efficiency, we design a memorization strategy in the cache updating module to accelerate the training process. Extensive experiments on four public datasets show the superiority of our DFMR in terms of both accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhouchen发布了新的文献求助10
1秒前
天真灭龙发布了新的文献求助10
2秒前
jt应助柔弱小懒虫采纳,获得10
3秒前
5秒前
张渔歌完成签到,获得积分10
6秒前
7秒前
路一直都在完成签到,获得积分10
7秒前
warren发布了新的文献求助10
8秒前
8秒前
爱科研的琪琪完成签到,获得积分10
11秒前
zhouchen完成签到,获得积分10
11秒前
小山隹完成签到,获得积分10
12秒前
HCLonely应助精明曼荷采纳,获得10
12秒前
yar举报糟糕的平彤求助涉嫌违规
16秒前
yar应助嗷呜嗷呜采纳,获得10
17秒前
17秒前
long0809完成签到,获得积分10
18秒前
英姑应助科研通管家采纳,获得10
18秒前
852应助科研通管家采纳,获得10
18秒前
18秒前
科目三应助科研通管家采纳,获得10
18秒前
Owen应助科研通管家采纳,获得10
18秒前
彭于彦祖应助科研通管家采纳,获得50
19秒前
华仔应助科研通管家采纳,获得10
19秒前
FashionBoy应助科研通管家采纳,获得30
19秒前
充电宝应助科研通管家采纳,获得10
19秒前
个性的紫菜应助科研通管家采纳,获得200
19秒前
prosperp应助科研通管家采纳,获得10
19秒前
秋日繁星应助科研通管家采纳,获得10
19秒前
19秒前
prosperp应助科研通管家采纳,获得10
19秒前
姜姜不姜就完成签到,获得积分10
20秒前
yar给糟糕的平彤的求助进行了留言
23秒前
23秒前
25秒前
汉堡包应助啵叽一口采纳,获得10
26秒前
29秒前
IV完成签到,获得积分10
30秒前
30秒前
朱杰完成签到 ,获得积分10
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3293208
求助须知:如何正确求助?哪些是违规求助? 2929410
关于积分的说明 8441437
捐赠科研通 2601499
什么是DOI,文献DOI怎么找? 1419946
科研通“疑难数据库(出版商)”最低求助积分说明 660452
邀请新用户注册赠送积分活动 643063