Explainable multiscale temporal convolutional neural network model for sleep stage detection based on electroencephalogram activities

多导睡眠图 卷积神经网络 计算机科学 人工智能 睡眠(系统调用) 脑电图 睡眠阶段 模式识别(心理学) 深度学习 人工神经网络 机器学习 语音识别 多导睡眠图 心理学 神经科学 操作系统
作者
Chun-Ren Phang,Akimasa Hirata
出处
期刊:Journal of Neural Engineering [IOP Publishing]
标识
DOI:10.1088/1741-2552/adb90c
摘要

Abstract Objective: Humans spend a significant portion of their lives in sleep (an essential driver of body metabolism). Moreover, as sleep deprivation could cause various health complications, it is crucial to develop an automatic sleep stage detection model to facilitate the tedious manual labeling process. Notably, recently proposed sleep staging algorithms lack model explainability and still require performance improvement. Approach: We implemented multiscale neurophysiology-mimicking kernels to capture sleep-related electroencephalogram (EEG) activities at varying frequencies and temporal lengths; the implemented model was named “Multiscale Temporal Convolutional Neural Network (MTCNN).” Further, we evaluated its performance using an open-source dataset (Sleep-EDF Database Expanded comprising 153 days of polysomnogram data). Main results: By investigating the learned kernel weights, we observed that MTCNN detected the EEG activities specific to each sleep stage, such as the frequencies, K-complexes, and sawtooth waves. Furthermore, regarding the characterization of these neurophysiologically significant features, MTCNN demonstrated an overall accuracy (OAcc) of 91.12% and a Cohen kappa coefficient of 0.86 in the cross-subject paradigm. Notably, it demonstrated an OAcc of 88.24% and a Cohen kappa coefficient of 0.80 in the leave-few-days-out analysis. Our MTCNN model also outperformed the existing deep learning models in sleep stage classification even when it was trained with only 16% of the total EEG data, achieving an OAcc of 85.62% and a Cohen kappa coefficient of 0.75 on the remaining 84% of testing data. Significance: The proposed MTCNN enables model explainability and it can be trained with lesser amount of data, which is beneficial to its application in the real-world because large amounts of training data are not often and readily available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WY完成签到,获得积分10
1秒前
wanci应助爱学习的YY采纳,获得10
1秒前
舒心明杰完成签到,获得积分10
1秒前
赘婿应助xh采纳,获得10
1秒前
王麒发布了新的文献求助10
2秒前
isonomia完成签到,获得积分10
2秒前
Livrik发布了新的文献求助10
2秒前
小刘同学发布了新的文献求助10
3秒前
小蘑菇应助曼凡采纳,获得10
3秒前
繁弱发布了新的文献求助10
4秒前
如果完成签到,获得积分10
4秒前
YYYY完成签到,获得积分10
4秒前
123茄子完成签到 ,获得积分10
4秒前
Jeanne完成签到,获得积分10
5秒前
开整吧完成签到,获得积分10
5秒前
整点儿薯条完成签到,获得积分10
5秒前
lll完成签到,获得积分10
6秒前
6秒前
田様应助LIUYI采纳,获得10
6秒前
7秒前
7秒前
xh完成签到,获得积分10
8秒前
曼凡应助文件撤销了驳回
10秒前
樱岛麻衣完成签到,获得积分10
10秒前
Ava应助lili采纳,获得10
11秒前
dream完成签到 ,获得积分10
11秒前
11秒前
11秒前
ANLYep完成签到,获得积分10
12秒前
xh发布了新的文献求助10
12秒前
李庆林完成签到,获得积分10
12秒前
小蘑菇应助齐美丽采纳,获得10
12秒前
缓慢的夕阳完成签到,获得积分10
12秒前
雨碎寒江发布了新的文献求助10
13秒前
金志铭发布了新的文献求助10
13秒前
卜钊发布了新的文献求助30
13秒前
哈基米德应助枔火采纳,获得30
14秒前
科目三应助123茄子采纳,获得10
14秒前
16秒前
科研小白完成签到,获得积分10
16秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5227238
求助须知:如何正确求助?哪些是违规求助? 4398359
关于积分的说明 13689318
捐赠科研通 4263055
什么是DOI,文献DOI怎么找? 2339509
邀请新用户注册赠送积分活动 1336803
关于科研通互助平台的介绍 1292920