Explainable multiscale temporal convolutional neural network model for sleep stage detection based on electroencephalogram activities

多导睡眠图 卷积神经网络 计算机科学 人工智能 睡眠(系统调用) 脑电图 睡眠阶段 模式识别(心理学) 深度学习 人工神经网络 机器学习 语音识别 多导睡眠图 心理学 神经科学 操作系统
作者
Chun-Ren Phang,Akimasa Hirata
出处
期刊:Journal of Neural Engineering [IOP Publishing]
标识
DOI:10.1088/1741-2552/adb90c
摘要

Abstract Objective: Humans spend a significant portion of their lives in sleep (an essential driver of body metabolism). Moreover, as sleep deprivation could cause various health complications, it is crucial to develop an automatic sleep stage detection model to facilitate the tedious manual labeling process. Notably, recently proposed sleep staging algorithms lack model explainability and still require performance improvement. Approach: We implemented multiscale neurophysiology-mimicking kernels to capture sleep-related electroencephalogram (EEG) activities at varying frequencies and temporal lengths; the implemented model was named “Multiscale Temporal Convolutional Neural Network (MTCNN).” Further, we evaluated its performance using an open-source dataset (Sleep-EDF Database Expanded comprising 153 days of polysomnogram data). Main results: By investigating the learned kernel weights, we observed that MTCNN detected the EEG activities specific to each sleep stage, such as the frequencies, K-complexes, and sawtooth waves. Furthermore, regarding the characterization of these neurophysiologically significant features, MTCNN demonstrated an overall accuracy (OAcc) of 91.12% and a Cohen kappa coefficient of 0.86 in the cross-subject paradigm. Notably, it demonstrated an OAcc of 88.24% and a Cohen kappa coefficient of 0.80 in the leave-few-days-out analysis. Our MTCNN model also outperformed the existing deep learning models in sleep stage classification even when it was trained with only 16% of the total EEG data, achieving an OAcc of 85.62% and a Cohen kappa coefficient of 0.75 on the remaining 84% of testing data. Significance: The proposed MTCNN enables model explainability and it can be trained with lesser amount of data, which is beneficial to its application in the real-world because large amounts of training data are not often and readily available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
悲凉的强炫完成签到,获得积分10
1秒前
茉莉是个饱饱完成签到,获得积分10
2秒前
ljhtxf发布了新的文献求助10
4秒前
CodeCraft应助风清扬采纳,获得10
4秒前
深情安青应助wjx采纳,获得20
4秒前
5秒前
群山发布了新的文献求助10
5秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
咩咩应助zweq采纳,获得10
7秒前
欢呼妙菱发布了新的文献求助10
7秒前
8秒前
Ting发布了新的文献求助10
8秒前
8秒前
meng完成签到 ,获得积分10
9秒前
xxxgoldxsx完成签到,获得积分10
10秒前
wd发布了新的文献求助10
10秒前
简单发布了新的文献求助10
10秒前
ZSZ完成签到,获得积分10
11秒前
蒹葭萋萋发布了新的文献求助30
11秒前
domingo完成签到,获得积分10
11秒前
11秒前
愉快的依霜完成签到 ,获得积分10
12秒前
13秒前
11完成签到,获得积分10
14秒前
lili发布了新的文献求助10
14秒前
田様应助山君采纳,获得10
18秒前
22秒前
打打应助kylie采纳,获得10
22秒前
馆长应助11采纳,获得20
22秒前
舒服的安卉关注了科研通微信公众号
22秒前
搜集达人应助maud采纳,获得30
24秒前
25秒前
26秒前
有魅力的沧海完成签到 ,获得积分10
26秒前
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601124
求助须知:如何正确求助?哪些是违规求助? 4010920
关于积分的说明 12418075
捐赠科研通 3690904
什么是DOI,文献DOI怎么找? 2034732
邀请新用户注册赠送积分活动 1068013
科研通“疑难数据库(出版商)”最低求助积分说明 952626