Explainable multiscale temporal convolutional neural network model for sleep stage detection based on electroencephalogram activities

多导睡眠图 卷积神经网络 计算机科学 人工智能 睡眠(系统调用) 脑电图 睡眠阶段 模式识别(心理学) 深度学习 人工神经网络 机器学习 语音识别 多导睡眠图 心理学 神经科学 操作系统
作者
Chun-Ren Phang,Akimasa Hirata
出处
期刊:Journal of Neural Engineering [IOP Publishing]
标识
DOI:10.1088/1741-2552/adb90c
摘要

Abstract Objective: Humans spend a significant portion of their lives in sleep (an essential driver of body metabolism). Moreover, as sleep deprivation could cause various health complications, it is crucial to develop an automatic sleep stage detection model to facilitate the tedious manual labeling process. Notably, recently proposed sleep staging algorithms lack model explainability and still require performance improvement. Approach: We implemented multiscale neurophysiology-mimicking kernels to capture sleep-related electroencephalogram (EEG) activities at varying frequencies and temporal lengths; the implemented model was named “Multiscale Temporal Convolutional Neural Network (MTCNN).” Further, we evaluated its performance using an open-source dataset (Sleep-EDF Database Expanded comprising 153 days of polysomnogram data). Main results: By investigating the learned kernel weights, we observed that MTCNN detected the EEG activities specific to each sleep stage, such as the frequencies, K-complexes, and sawtooth waves. Furthermore, regarding the characterization of these neurophysiologically significant features, MTCNN demonstrated an overall accuracy (OAcc) of 91.12% and a Cohen kappa coefficient of 0.86 in the cross-subject paradigm. Notably, it demonstrated an OAcc of 88.24% and a Cohen kappa coefficient of 0.80 in the leave-few-days-out analysis. Our MTCNN model also outperformed the existing deep learning models in sleep stage classification even when it was trained with only 16% of the total EEG data, achieving an OAcc of 85.62% and a Cohen kappa coefficient of 0.75 on the remaining 84% of testing data. Significance: The proposed MTCNN enables model explainability and it can be trained with lesser amount of data, which is beneficial to its application in the real-world because large amounts of training data are not often and readily available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Happyness应助17381362015采纳,获得10
刚刚
京昭发布了新的文献求助10
1秒前
菜鸟12发布了新的文献求助10
1秒前
shizi发布了新的文献求助10
1秒前
MZ完成签到,获得积分10
1秒前
炙热怜寒发布了新的文献求助30
1秒前
ZZ完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
4秒前
寻359完成签到,获得积分10
4秒前
jidou1011发布了新的文献求助10
4秒前
打打应助KDanielt采纳,获得10
6秒前
潇湘完成签到 ,获得积分10
6秒前
极光发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
苹果信封完成签到,获得积分10
7秒前
7秒前
小嘎完成签到,获得积分10
8秒前
小狐狸完成签到,获得积分20
8秒前
dongjy应助xyzdmmm采纳,获得50
8秒前
Orange应助TONG采纳,获得30
8秒前
11发布了新的文献求助10
9秒前
优雅苑睐完成签到,获得积分10
9秒前
铁头完成签到,获得积分10
11秒前
炙热怜寒完成签到,获得积分10
11秒前
CCC应助子车友绿采纳,获得100
11秒前
11秒前
希望天下0贩的0应助Superman采纳,获得10
11秒前
11秒前
75986686发布了新的文献求助10
12秒前
棒棒的红红完成签到,获得积分10
12秒前
12秒前
人不犯二枉少年完成签到,获得积分10
13秒前
赘婿应助夏天与葡萄采纳,获得10
13秒前
13秒前
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978596
求助须知:如何正确求助?哪些是违规求助? 3522689
关于积分的说明 11214402
捐赠科研通 3260158
什么是DOI,文献DOI怎么找? 1799770
邀请新用户注册赠送积分活动 878659
科研通“疑难数据库(出版商)”最低求助积分说明 807033