Miniaturized Liquid Metal Composite Circuits with Energy Harvesting Coils for Battery‐Free Bioelectronics and Optogenetics

生物电子学 光遗传学 材料科学 电池(电) 复合数 能量收集 超级电容器 纳米技术 电子线路 液态金属 电气工程 光电子学 能量(信号处理) 电化学 电极 复合材料 神经科学 工程类 生物传感器 物理化学 功率(物理) 物理 化学 统计 生物 量子力学 数学
作者
D.A. Camargo Barros Rocha,Pedro Alhais Lopes,Paulo Peixoto,Anı́bal T. de Almeida,Mahmoud Tavakoli
出处
期刊:Advanced Functional Materials [Wiley]
标识
DOI:10.1002/adfm.202417053
摘要

Abstract Over the past years, rapid progress has been made on soft‐matter electronics for wearable and implantable devices, for bioelectronics and optogenetics. Liquid Metal (LM) based electronics are especially popular, due to their long‐term durability, when subject to repetitive strain cycles. However, one major limitation has been the need for tethering bioelectronics circuits to external power, or the use of rigid bulky batteries. This has motivated a growing interest in wireless energy transfer, which demands circuit miniaturization. However, miniaturization of LM circuits is challenging due to low LM‐substrate adhesion, LM smearing, and challenges on microchip‐interfacing. In this article, these challenges are addressed by high‐resolution laser‐assisted micropatterning of biphasic LM composites and vapor‐assisted LM microchip soldering. Through the development of a search algorithm for optimization of the biphasic ink coil performance, micro coils with trace spacing of 50 µm are designed and implemented that can harvest a significant amount of energy (178 mW cm −2 ) through near field inductive coupling. Miniaturized soft‐matter circuits with integrated SMD chips such as NFC chips, capacitors, and LEDs that are implemented in a few minutes through laser patterning, and vapor‐assisted soldering. In the context of optogenetics, where lightweight, miniaturized systems are needed to provide optical stimulation, soft coils stand out in terms of their improved conformability and flexibility. Thus, this article explores the applications of soft coils in wearable and implantable devices, with a specific focus on their use in optogenetics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
科研通AI6应助韩瑞采纳,获得10
刚刚
yy发布了新的文献求助20
1秒前
1秒前
1秒前
Tourist应助欢呼宛秋采纳,获得10
1秒前
隐形曼青应助虚幻青曼采纳,获得10
1秒前
柴鱼完成签到,获得积分10
2秒前
无闻发布了新的文献求助10
2秒前
啦啦啦发布了新的文献求助10
2秒前
daisy完成签到,获得积分10
2秒前
2秒前
慕青应助帅气的高跟鞋采纳,获得10
2秒前
zz发布了新的文献求助10
3秒前
3秒前
3秒前
科研通AI5应助hsn采纳,获得10
3秒前
欣慰碧琴发布了新的文献求助20
4秒前
Kim发布了新的文献求助10
4秒前
自由的王关注了科研通微信公众号
4秒前
luckly发布了新的文献求助10
4秒前
5秒前
健康的雨灵完成签到,获得积分10
5秒前
搜集达人应助沉梦志昂采纳,获得10
5秒前
从容凝雁发布了新的文献求助10
5秒前
ZZ完成签到,获得积分20
5秒前
昏睡的炎彬完成签到,获得积分10
6秒前
海的海发布了新的文献求助10
6秒前
花火妖妖完成签到,获得积分10
6秒前
慕青应助Sunday采纳,获得10
7秒前
会积极完成签到,获得积分10
7秒前
希望天下0贩的0应助月白采纳,获得10
7秒前
7秒前
111发布了新的文献求助10
7秒前
树袋完成签到,获得积分10
8秒前
Hello应助虚拟的冰淇淋采纳,获得10
8秒前
Akim应助DueDue0327采纳,获得10
8秒前
8秒前
鲤跃发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
MARCH'S ADVANCED ORGANIC CHEMISTRY REACTIONS, MECHANISMS, AND STRUCTURE 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5085703
求助须知:如何正确求助?哪些是违规求助? 4301785
关于积分的说明 13405360
捐赠科研通 4126726
什么是DOI,文献DOI怎么找? 2260000
邀请新用户注册赠送积分活动 1264125
关于科研通互助平台的介绍 1198313