Atom level enzyme active site scaffolding using RFdiffusion2

活动站点 Atom(片上系统) 化学 支架蛋白 计算机科学 生物化学 信号转导 嵌入式系统
作者
Woody Ahern,Jason Yim,Doug Tischer,Saman Salike,Seth M. Woodbury,Donghyo Kim,Indrek Kalvet,Yakov Kipnis,Brian Coventry,Han Altae-Tran,Magnus S. Bauer,Regina Barzilay,Tommi Jaakkola,Rohith Krishna,David Baker
标识
DOI:10.1101/2025.04.09.648075
摘要

De novo enzyme design starts from ideal active site descriptions consisting of constellations of catalytic residue functional groups around reaction transition state(s), and seeks to generate protein structures that can accurately hold the site in place. Highly active enzymes have been designed starting from such descriptions using the generative AI method RFdiffusion, but there are two current methodological limitations. First, the geometry of the active site can only be specified at the residue level, so for each catalytic residue functional group placed around the reaction transition state, the possible locations of the residue backbone must be enumerated by building side chain rotamers back from the functional group. Second, the location of the catalytic residues along the sequence must be specified in advance, which considerably limits the space of solutions which can be sampled. Here we describe a new deep generative method, RoseTTAFold diffusion 2 (RFdiffusion2), that solves both problems, enabling enzymes to be designed from sequence agnostic descriptions of functional group locations without inverse rotamer generation. We first evaluate RFdiffusion2 on an in silico enzyme design benchmark of 41 diverse active sites and find that it is able to successfully build proteins scaffolding all 41 sites, compared to 16/41 with prior state-of-the-art deep learning methods. Next, we design enzymes around three diverse catalytic sites and characterize the designs experimentally; in each case we identify active catalysts in testing less than 96 sequences. RFdiffusion2 demonstrates the potential of atomic resolution generative models for the design of de novo enzymes directly from their reaction mechanisms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不爱科研完成签到 ,获得积分10
1秒前
科研通AI5应助Zephr采纳,获得10
1秒前
易伊澤发布了新的文献求助10
1秒前
奶糖喵完成签到 ,获得积分10
2秒前
天天快乐应助中中中采纳,获得10
3秒前
4秒前
4秒前
旭龙完成签到,获得积分10
4秒前
cL完成签到 ,获得积分10
6秒前
充电宝应助Wang樂梧采纳,获得10
7秒前
燕燕于飞完成签到,获得积分10
8秒前
哭泣的幼蓉完成签到 ,获得积分10
8秒前
LiFeiYu完成签到,获得积分10
9秒前
欢歌笑语发布了新的文献求助10
9秒前
10秒前
nino发布了新的文献求助20
10秒前
11秒前
小灰灰完成签到 ,获得积分10
11秒前
yz完成签到,获得积分10
11秒前
11秒前
哈哈悦完成签到,获得积分10
12秒前
帝国超级硕士完成签到,获得积分10
12秒前
亲亲发布了新的文献求助10
13秒前
夏大海完成签到,获得积分10
13秒前
14秒前
Oliver完成签到 ,获得积分10
14秒前
14秒前
wm完成签到,获得积分10
15秒前
科研小蔡发布了新的文献求助10
15秒前
二三发布了新的文献求助10
16秒前
yingccc完成签到,获得积分10
16秒前
欢歌笑语完成签到,获得积分10
17秒前
Zephr发布了新的文献求助10
17秒前
Nariy完成签到,获得积分10
18秒前
兴奋不弱发布了新的文献求助10
18秒前
风和日丽完成签到,获得积分10
19秒前
英俊的铭应助yanzu采纳,获得10
21秒前
科研通AI2S应助cyx采纳,获得10
22秒前
无聊的凡阳完成签到,获得积分20
23秒前
23秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736892
求助须知:如何正确求助?哪些是违规求助? 3280817
关于积分的说明 10021089
捐赠科研通 2997457
什么是DOI,文献DOI怎么找? 1644633
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749703