电催化剂
碳纤维
催化作用
材料科学
化学工程
重量分析
甲醇
电池(电)
无机化学
化学
复合材料
电极
有机化学
电化学
复合数
功率(物理)
物理
物理化学
量子力学
工程类
作者
Chenyang Shu,Chaozhong Guo,Xinru Xu,Lingtao Sun,Yao Liu,Hongdian Chen,Chuanlan Xu,Rong Jin,Yujun Si,Haifeng Chen
标识
DOI:10.1016/j.apsusc.2023.158604
摘要
Designing micropore-rich carbon materials with large specific surface area (SSA) as a carbon-based oxygen reduction reaction (ORR) electrocatalyst is still frontier but remains challenging in catalysis of zinc-air batteries. Here we propose a new strategy for synthesis of nitrogen atoms co-doped carbon sheets and carbon quantum dots (N-C@CQDs) with an SSA of 1485.3 m2 g−1 and 98.8 % micro-porosity from α-cellulose via using a complex salt (ZnCl2-NH4Cl) with low eutectic point (179 °C) as a pore regulator and K2FeO4 as a graphitization catalyst, which can serve as an active and stable carbon-based ORR electrocatalyst. The role of K2FeO4 not only promotes graphitization but also oxidizes the large-sized graphitic carbon particles into a huge amount of uniformly distributed CQDs. This catalyst has exhibited a comparable ORR activity and superior stability to the Pt/C, but a Zn-air battery assembled with the former has delivered a higher peak power density (214 mW cm−2) and a larger gravimetric energy density (ED) of (959 Wh kgZn-1), especially in which it also displays an outstanding catalytic durability with 98.7 % ED retention during a ∼110 h continuous discharge. This work provides a new pathway for design of high-performance carbon-based ORR catalysts in various energy devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI