多囊卵巢
基因沉默
巴基斯坦卢比
细胞凋亡
信号转导
激酶
生物
活力测定
细胞生物学
癌症研究
化学
内科学
内分泌学
医学
胰岛素抵抗
丙酮酸激酶
生物化学
胰岛素
糖酵解
新陈代谢
基因
作者
Hui Miao,Shuihan Hu,Lijiao Ye,Mingyue Zhang,Xiaoqing Jing,Yanli Hong
标识
DOI:10.1016/j.bbrc.2023.08.004
摘要
Polycystic ovary syndrome (PCOS) exhibits the highest morbidity among endocrine diseases in women ranging from age 18 to 44. However, its pathogenesis remains unclear. The imbalance between systemic and ovarian oxidative stress (OS) is a key characteristic of PCOS, and accumulating evidence indicates that the antioxidative protein nuclear factor erythroid-2-related factor 2 (Nrf2) is implicated in cell apoptosis and inflammation caused by OS. The activated kinase 2 (PAK2)/-catenin/c-Myc/pyruvate kinase M2 (PKM2) axis is a newly identified signaling pathway that may regulate Nrf2 expression and thereby influence OS. In this study, we sought to identify PAK2 expression and function in PCOS cells. PAK2 and downstream PKM2 expression in KGN cells and tissues were detected by microarray and qPCR. Cell viability was determined using CCK-8 and colony formation assays (CFAs). Apoptosis was examined by flow cytometry. qPCR and ELISA were used to examine cell inflammation. Oxidant and OS-related enzymes were examined by ELISA. We found that PAK2 and PKM2 expression levels were reduced in KGN cells and PCOS ovarian cortex tissues. PAK2 overexpression activated β-catenin/c-Myc/PKM2 while PAK2 silencing deactivated it. PAK2 overexpression was reduced, whereas PAK2 silencing promoted, KGN cell proliferation and colony formation. Cell apoptosis and inflammation were also induced by PAK2 overexpression but were alleviated by its silencing. Furthermore, increased peroxidation product levels decreased antioxidative protein activities, and deactivated antioxidative Nrf2/HO-1 pathway were detected in PAK2-overexpressing KGN cells, whereas these effects were counteracted in PAK2 silenced cells. Our data suggest that PAK2 and its associated β-catenin/c-Myc/PKM2 inhibited cell viability and induced apoptosis and inflammation by triggering OS by deactivating the Nrf2/HO-1 pathway, suggesting the potential of PAK2 as a therapeutic PCOS treatment target.
科研通智能强力驱动
Strongly Powered by AbleSci AI