已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Structure Preserved Discriminative Distribution Adaptation for Multihyperspectral Image Collaborative Classification

判别式 计算机科学 高光谱成像 模式识别(心理学) 人工智能 多光谱图像 上下文图像分类 线性子空间 图像(数学) 数学 几何学
作者
Bin Guo,Tianzhu Liu,Yanfeng Gu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:2
标识
DOI:10.1109/tgrs.2023.3315472
摘要

The fine spectra of the hyperspectral (HS) images can fully reflect the subtle features of the spectra of different objects. However, due to the limitation of the imaging equipment, its swath is not as large as that of multispectral (MS) images. The acquisition of MS images is more convenient, but the discrimination of spectral features is relatively poor. This paper aims to investigate how partially overlapping HS images can be utilized to improve the classification accuracy of large-scene MS images. Due to the spectral mismatch existing between MS and HS features, traditional transfer learning methods cannot solve the problem of classification with heterogeneous features. To address this issue, a novel structure-preserving discriminative distribution adaptive MS-HS image collaborative classification method is proposed in this paper, which aims to improve the classification accuracy of large-scene MS images by discriminative features. Specifically, this method combines statistical properties and geometric constraints in transfer learning, and jointly maximizes the distance between different classes by discriminative least squares to maximize classification accuracy. Moreover, the source and target domains are probabilistically adaptive while maintaining the local structure of MS-HS features, so that the data distribution is fully aligned and the distance between different classes is increased. The learned mapping matrix enables the mapping of multi-scale spectral-spatial features of MS-HS images to subspaces for classification. Compared with related advanced methods, three sets of MS-HS data sets show that the proposed method can effectively reduce the differences between MS-HS data and achieve better classification results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拥有八根情丝完成签到 ,获得积分10
1秒前
1秒前
爆米花应助稳重的书兰采纳,获得10
1秒前
丙泊酚完成签到,获得积分10
1秒前
2秒前
genomed应助小丘2024采纳,获得10
4秒前
zhouleiwang发布了新的文献求助10
5秒前
斯文败类应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
丙泊酚发布了新的文献求助10
7秒前
ding应助炒栗子采纳,获得10
8秒前
林夕发布了新的文献求助10
9秒前
10秒前
852应助害羞外套采纳,获得10
14秒前
22秒前
22秒前
orixero应助阿敲采纳,获得10
23秒前
有丝分裂吉完成签到,获得积分10
23秒前
23秒前
牛奶发布了新的文献求助10
27秒前
张咸鱼完成签到 ,获得积分10
29秒前
瑾昭发布了新的文献求助10
30秒前
星星完成签到,获得积分10
31秒前
32秒前
33秒前
刘珊妹完成签到,获得积分10
34秒前
NexusExplorer应助郜雨寒采纳,获得10
38秒前
闹心发布了新的文献求助10
39秒前
39秒前
听风发布了新的文献求助50
41秒前
炒栗子发布了新的文献求助10
43秒前
运气爆棚完成签到,获得积分10
47秒前
48秒前
勤恳的德地完成签到 ,获得积分10
48秒前
kk完成签到 ,获得积分10
51秒前
51秒前
54秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139336
求助须知:如何正确求助?哪些是违规求助? 2790244
关于积分的说明 7794607
捐赠科研通 2446679
什么是DOI,文献DOI怎么找? 1301314
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601109