Structure Preserved Discriminative Distribution Adaptation for Multihyperspectral Image Collaborative Classification

判别式 计算机科学 高光谱成像 模式识别(心理学) 人工智能 多光谱图像 上下文图像分类 线性子空间 图像(数学) 数学 几何学
作者
Bin Guo,Tianzhu Liu,Yanfeng Gu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:2
标识
DOI:10.1109/tgrs.2023.3315472
摘要

The fine spectra of the hyperspectral (HS) images can fully reflect the subtle features of the spectra of different objects. However, due to the limitation of the imaging equipment, its swath is not as large as that of multispectral (MS) images. The acquisition of MS images is more convenient, but the discrimination of spectral features is relatively poor. This paper aims to investigate how partially overlapping HS images can be utilized to improve the classification accuracy of large-scene MS images. Due to the spectral mismatch existing between MS and HS features, traditional transfer learning methods cannot solve the problem of classification with heterogeneous features. To address this issue, a novel structure-preserving discriminative distribution adaptive MS-HS image collaborative classification method is proposed in this paper, which aims to improve the classification accuracy of large-scene MS images by discriminative features. Specifically, this method combines statistical properties and geometric constraints in transfer learning, and jointly maximizes the distance between different classes by discriminative least squares to maximize classification accuracy. Moreover, the source and target domains are probabilistically adaptive while maintaining the local structure of MS-HS features, so that the data distribution is fully aligned and the distance between different classes is increased. The learned mapping matrix enables the mapping of multi-scale spectral-spatial features of MS-HS images to subspaces for classification. Compared with related advanced methods, three sets of MS-HS data sets show that the proposed method can effectively reduce the differences between MS-HS data and achieve better classification results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
嗯嗯完成签到 ,获得积分10
1秒前
SaSa完成签到,获得积分10
1秒前
平常毛衣完成签到,获得积分10
1秒前
fyjlfy完成签到 ,获得积分10
1秒前
libai完成签到 ,获得积分20
2秒前
ZR666888完成签到,获得积分10
2秒前
明理夏槐完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
Charming发布了新的文献求助10
3秒前
888关闭了888文献求助
4秒前
如意的手套完成签到,获得积分10
5秒前
煎饼果子完成签到 ,获得积分10
5秒前
用行舍藏完成签到,获得积分10
6秒前
6秒前
111完成签到,获得积分10
7秒前
辛勤如柏完成签到,获得积分10
7秒前
彼方完成签到,获得积分10
7秒前
超级天磊完成签到,获得积分10
10秒前
viogriffin完成签到,获得积分0
10秒前
韶华若锦完成签到 ,获得积分10
10秒前
CHENCHEN完成签到 ,获得积分10
10秒前
888关闭了888文献求助
11秒前
量子星尘发布了新的文献求助10
11秒前
长颈鹿完成签到 ,获得积分10
11秒前
蓝天应助guangyu采纳,获得10
11秒前
SciGPT应助暴走小面包采纳,获得10
12秒前
我是老大应助小冯爱睡觉采纳,获得10
12秒前
欧耶欧椰完成签到 ,获得积分10
13秒前
13秒前
tangshu完成签到 ,获得积分10
14秒前
lezard完成签到,获得积分10
15秒前
坚定的苑睐完成签到 ,获得积分10
15秒前
1234完成签到 ,获得积分10
16秒前
16秒前
XiaoMaomi完成签到,获得积分10
17秒前
小茗同学完成签到,获得积分10
17秒前
莽哥完成签到,获得积分10
18秒前
扯淡儿完成签到 ,获得积分10
19秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658527
求助须知:如何正确求助?哪些是违规求助? 4822513
关于积分的说明 15081782
捐赠科研通 4817023
什么是DOI,文献DOI怎么找? 2577908
邀请新用户注册赠送积分活动 1532725
关于科研通互助平台的介绍 1491434