Structure Preserved Discriminative Distribution Adaptation for Multihyperspectral Image Collaborative Classification

判别式 计算机科学 高光谱成像 模式识别(心理学) 人工智能 多光谱图像 上下文图像分类 线性子空间 图像(数学) 数学 几何学
作者
Bin Guo,Tianzhu Liu,Yanfeng Gu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:2
标识
DOI:10.1109/tgrs.2023.3315472
摘要

The fine spectra of the hyperspectral (HS) images can fully reflect the subtle features of the spectra of different objects. However, due to the limitation of the imaging equipment, its swath is not as large as that of multispectral (MS) images. The acquisition of MS images is more convenient, but the discrimination of spectral features is relatively poor. This paper aims to investigate how partially overlapping HS images can be utilized to improve the classification accuracy of large-scene MS images. Due to the spectral mismatch existing between MS and HS features, traditional transfer learning methods cannot solve the problem of classification with heterogeneous features. To address this issue, a novel structure-preserving discriminative distribution adaptive MS-HS image collaborative classification method is proposed in this paper, which aims to improve the classification accuracy of large-scene MS images by discriminative features. Specifically, this method combines statistical properties and geometric constraints in transfer learning, and jointly maximizes the distance between different classes by discriminative least squares to maximize classification accuracy. Moreover, the source and target domains are probabilistically adaptive while maintaining the local structure of MS-HS features, so that the data distribution is fully aligned and the distance between different classes is increased. The learned mapping matrix enables the mapping of multi-scale spectral-spatial features of MS-HS images to subspaces for classification. Compared with related advanced methods, three sets of MS-HS data sets show that the proposed method can effectively reduce the differences between MS-HS data and achieve better classification results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cookieMichael发布了新的文献求助60
1秒前
2秒前
2秒前
xuanyu应助漂亮惜霜采纳,获得10
4秒前
6秒前
Ss发布了新的文献求助10
6秒前
10秒前
善学以致用应助微尘之末采纳,获得10
10秒前
14秒前
自觉馒头发布了新的文献求助10
16秒前
陶醉铁身完成签到,获得积分20
16秒前
赘婿应助德德采纳,获得10
19秒前
陶醉铁身发布了新的文献求助30
21秒前
YYY发布了新的文献求助10
23秒前
SciGPT应助linshu采纳,获得10
24秒前
25秒前
27秒前
桐桐应助TTT0530采纳,获得10
29秒前
31秒前
小吴完成签到 ,获得积分10
31秒前
心心完成签到 ,获得积分10
33秒前
Zed发布了新的文献求助10
33秒前
36秒前
ding应助海东南采纳,获得10
36秒前
顾矜应助Zed采纳,获得10
37秒前
38秒前
莉莉安完成签到,获得积分10
39秒前
42秒前
烟花发布了新的文献求助10
42秒前
42秒前
小羊要加油完成签到,获得积分20
43秒前
43秒前
44秒前
小千完成签到,获得积分10
44秒前
科研通AI2S应助开放的高山采纳,获得10
45秒前
海东南发布了新的文献求助10
48秒前
魅傲发布了新的文献求助10
49秒前
张洁发布了新的文献求助10
50秒前
小千发布了新的文献求助10
51秒前
53秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055373
求助须知:如何正确求助?哪些是违规求助? 2712154
关于积分的说明 7429854
捐赠科研通 2356935
什么是DOI,文献DOI怎么找? 1248350
科研通“疑难数据库(出版商)”最低求助积分说明 606700
版权声明 596093