已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Driver Injury Prediction Model based on Genetic Algorithm and BP Neural Network

人工神经网络 支持向量机 计算机科学 遗传算法 可靠性(半导体) 机器学习 人工智能 算法 功率(物理) 物理 量子力学
作者
Ying Lu,Rong Kuang
标识
DOI:10.1109/ictis60134.2023.10243825
摘要

In order to improve the survival rate of the injured in the accident, many vehicles are now equipped with automatic crash notification system (ACNS) in vehicle. As the core of the system, the driver injury prediction model can predict the driver's injury category in time and send the injury situation to the emergency medical institution. The medical institution arranges the optimal rescue team and hospital according to the injury situation obtained by the algorithm, which greatly reduces the economic loss and mortality caused by the accident. This paper mainly studies the severity of driver injury. Using the annual data from 2019 National Highway Traffic Safety Administration (NHTSA) Fatality Analysis Reporting System (FARS), from which 10 variables such as driver injury, driver age and height were extracted, and the correlation between each independent variable and dependent variable was analyzed to increase the reliability and prediction accuracy of the network model adopted in this paper. In this paper, the combination of genetic algorithm and BP neural network was used to build a driver injury prediction model with machine learning. Compared with support vector machines (SVM), long short-term memory (LSTM), traditional BP neural network and logistic linear model, the accuracy was improved by 11.78%, 6.54%, 7.08% and 13.78% respectively. The research results can be used to improve the algorithm and performance of the enterprise call center in the advanced vehicle collision automatic call system, and finally can effectively improve the efficiency of accident rescue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
guojingjing发布了新的文献求助10
2秒前
今昔发布了新的文献求助10
3秒前
默默发布了新的文献求助10
3秒前
白星辰完成签到 ,获得积分10
5秒前
subat完成签到,获得积分10
5秒前
hush完成签到,获得积分10
7秒前
KY发布了新的文献求助10
8秒前
云霞完成签到 ,获得积分10
8秒前
熊猫发布了新的文献求助30
9秒前
guojingjing完成签到,获得积分10
10秒前
重要手机完成签到 ,获得积分10
11秒前
11秒前
WZH发布了新的文献求助10
16秒前
慕青应助默默采纳,获得10
17秒前
QQ糖发布了新的文献求助10
17秒前
没有昵称完成签到 ,获得积分10
18秒前
my应助pancake采纳,获得30
20秒前
文艺语蓉关注了科研通微信公众号
23秒前
24秒前
科目三应助今昔采纳,获得10
27秒前
NexusExplorer应助蓦然采纳,获得10
27秒前
殷勤的凌蝶完成签到 ,获得积分10
29秒前
轻松棉花糖完成签到 ,获得积分10
29秒前
珏珏_不是玉玉完成签到 ,获得积分10
31秒前
FX1688完成签到 ,获得积分10
32秒前
32秒前
林欢喜完成签到,获得积分10
32秒前
35秒前
WZH完成签到,获得积分10
36秒前
yuyuan完成签到,获得积分10
36秒前
37秒前
有趣的银完成签到,获得积分10
38秒前
my应助快乐的小蘑菇采纳,获得30
39秒前
文艺语蓉发布了新的文献求助10
39秒前
五月初夏发布了新的文献求助10
39秒前
aj发布了新的文献求助10
39秒前
40秒前
震动的忆雪完成签到 ,获得积分10
40秒前
艾路完成签到,获得积分10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301583
求助须知:如何正确求助?哪些是违规求助? 4449070
关于积分的说明 13847752
捐赠科研通 4335139
什么是DOI,文献DOI怎么找? 2380126
邀请新用户注册赠送积分活动 1375107
关于科研通互助平台的介绍 1341130