A Driver Injury Prediction Model based on Genetic Algorithm and BP Neural Network

人工神经网络 支持向量机 计算机科学 遗传算法 可靠性(半导体) 机器学习 人工智能 算法 功率(物理) 物理 量子力学
作者
Ying Lu,Rong Kuang
标识
DOI:10.1109/ictis60134.2023.10243825
摘要

In order to improve the survival rate of the injured in the accident, many vehicles are now equipped with automatic crash notification system (ACNS) in vehicle. As the core of the system, the driver injury prediction model can predict the driver's injury category in time and send the injury situation to the emergency medical institution. The medical institution arranges the optimal rescue team and hospital according to the injury situation obtained by the algorithm, which greatly reduces the economic loss and mortality caused by the accident. This paper mainly studies the severity of driver injury. Using the annual data from 2019 National Highway Traffic Safety Administration (NHTSA) Fatality Analysis Reporting System (FARS), from which 10 variables such as driver injury, driver age and height were extracted, and the correlation between each independent variable and dependent variable was analyzed to increase the reliability and prediction accuracy of the network model adopted in this paper. In this paper, the combination of genetic algorithm and BP neural network was used to build a driver injury prediction model with machine learning. Compared with support vector machines (SVM), long short-term memory (LSTM), traditional BP neural network and logistic linear model, the accuracy was improved by 11.78%, 6.54%, 7.08% and 13.78% respectively. The research results can be used to improve the algorithm and performance of the enterprise call center in the advanced vehicle collision automatic call system, and finally can effectively improve the efficiency of accident rescue.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
琉璃发布了新的文献求助20
刚刚
量子星尘发布了新的文献求助10
1秒前
pass发布了新的文献求助10
1秒前
hanzhiyuxing发布了新的文献求助10
1秒前
煜清清完成签到 ,获得积分10
1秒前
1秒前
2秒前
姜糊完成签到,获得积分10
2秒前
研友_8WbVOZ完成签到,获得积分10
2秒前
ALMT完成签到,获得积分10
2秒前
sparks发布了新的文献求助10
3秒前
鸡翅科学家完成签到,获得积分10
3秒前
4秒前
孤鸿影98完成签到,获得积分10
5秒前
6秒前
科研通AI2S应助孤鸿影98采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
思源应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
10秒前
BowieHuang应助科研通管家采纳,获得10
10秒前
思源应助科研通管家采纳,获得10
10秒前
Juid应助科研通管家采纳,获得20
10秒前
BowieHuang应助科研通管家采纳,获得10
10秒前
邵璞发布了新的文献求助10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
星辰大海应助zyw采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
BowieHuang应助科研通管家采纳,获得10
11秒前
BowieHuang应助科研通管家采纳,获得10
11秒前
今后应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
BowieHuang应助三十三天采纳,获得10
12秒前
鞭霆发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632506
求助须知:如何正确求助?哪些是违规求助? 4727031
关于积分的说明 14982275
捐赠科研通 4790442
什么是DOI,文献DOI怎么找? 2558305
邀请新用户注册赠送积分活动 1518683
关于科研通互助平台的介绍 1479145