A Driver Injury Prediction Model based on Genetic Algorithm and BP Neural Network

人工神经网络 支持向量机 计算机科学 遗传算法 可靠性(半导体) 机器学习 人工智能 算法 功率(物理) 物理 量子力学
作者
Ying Lu,Rong Kuang
标识
DOI:10.1109/ictis60134.2023.10243825
摘要

In order to improve the survival rate of the injured in the accident, many vehicles are now equipped with automatic crash notification system (ACNS) in vehicle. As the core of the system, the driver injury prediction model can predict the driver's injury category in time and send the injury situation to the emergency medical institution. The medical institution arranges the optimal rescue team and hospital according to the injury situation obtained by the algorithm, which greatly reduces the economic loss and mortality caused by the accident. This paper mainly studies the severity of driver injury. Using the annual data from 2019 National Highway Traffic Safety Administration (NHTSA) Fatality Analysis Reporting System (FARS), from which 10 variables such as driver injury, driver age and height were extracted, and the correlation between each independent variable and dependent variable was analyzed to increase the reliability and prediction accuracy of the network model adopted in this paper. In this paper, the combination of genetic algorithm and BP neural network was used to build a driver injury prediction model with machine learning. Compared with support vector machines (SVM), long short-term memory (LSTM), traditional BP neural network and logistic linear model, the accuracy was improved by 11.78%, 6.54%, 7.08% and 13.78% respectively. The research results can be used to improve the algorithm and performance of the enterprise call center in the advanced vehicle collision automatic call system, and finally can effectively improve the efficiency of accident rescue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助奋斗安莲采纳,获得10
1秒前
坚强的广山应助JacksonYoung采纳,获得200
2秒前
拼搏愚志发布了新的文献求助10
3秒前
李健的小迷弟应助严溯采纳,获得10
4秒前
所所应助非同小可采纳,获得10
5秒前
大模型应助和谐的白亦采纳,获得10
7秒前
现实马里奥完成签到,获得积分10
8秒前
笨笨娇完成签到 ,获得积分10
8秒前
9秒前
11秒前
11秒前
李健的小迷弟应助wyr采纳,获得10
12秒前
Ruuo616完成签到 ,获得积分10
13秒前
兴奋大船发布了新的文献求助10
15秒前
GGZ发布了新的文献求助10
15秒前
严溯完成签到,获得积分20
16秒前
as发布了新的文献求助10
16秒前
乐乐应助小t要读top博采纳,获得10
21秒前
山神厘子完成签到,获得积分10
21秒前
wys完成签到 ,获得积分10
21秒前
22秒前
yayan完成签到,获得积分10
23秒前
24秒前
缘6688完成签到,获得积分10
26秒前
方大完成签到,获得积分10
29秒前
wyr发布了新的文献求助10
30秒前
辞却应助与久采纳,获得10
31秒前
清爽冬莲完成签到 ,获得积分10
31秒前
费尔明娜完成签到,获得积分10
32秒前
YOOO完成签到,获得积分10
33秒前
羊沛蓝应助你好好想想zxn采纳,获得10
33秒前
天天快乐应助科研通管家采纳,获得10
36秒前
共享精神应助科研通管家采纳,获得10
36秒前
思源应助科研通管家采纳,获得10
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
36秒前
Orange应助科研通管家采纳,获得10
37秒前
传奇3应助科研通管家采纳,获得10
37秒前
JamesPei应助Atlantis采纳,获得10
37秒前
温暖的鸿完成签到 ,获得积分10
41秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262667
求助须知:如何正确求助?哪些是违规求助? 2903265
关于积分的说明 8324749
捐赠科研通 2573377
什么是DOI,文献DOI怎么找? 1398211
科研通“疑难数据库(出版商)”最低求助积分说明 654024
邀请新用户注册赠送积分活动 632642