A Driver Injury Prediction Model based on Genetic Algorithm and BP Neural Network

人工神经网络 支持向量机 计算机科学 遗传算法 可靠性(半导体) 机器学习 人工智能 算法 功率(物理) 物理 量子力学
作者
Ying Lu,Rong Kuang
标识
DOI:10.1109/ictis60134.2023.10243825
摘要

In order to improve the survival rate of the injured in the accident, many vehicles are now equipped with automatic crash notification system (ACNS) in vehicle. As the core of the system, the driver injury prediction model can predict the driver's injury category in time and send the injury situation to the emergency medical institution. The medical institution arranges the optimal rescue team and hospital according to the injury situation obtained by the algorithm, which greatly reduces the economic loss and mortality caused by the accident. This paper mainly studies the severity of driver injury. Using the annual data from 2019 National Highway Traffic Safety Administration (NHTSA) Fatality Analysis Reporting System (FARS), from which 10 variables such as driver injury, driver age and height were extracted, and the correlation between each independent variable and dependent variable was analyzed to increase the reliability and prediction accuracy of the network model adopted in this paper. In this paper, the combination of genetic algorithm and BP neural network was used to build a driver injury prediction model with machine learning. Compared with support vector machines (SVM), long short-term memory (LSTM), traditional BP neural network and logistic linear model, the accuracy was improved by 11.78%, 6.54%, 7.08% and 13.78% respectively. The research results can be used to improve the algorithm and performance of the enterprise call center in the advanced vehicle collision automatic call system, and finally can effectively improve the efficiency of accident rescue.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
jiumingyi完成签到,获得积分10
4秒前
天天快乐应助Zw采纳,获得10
4秒前
伍寒烟发布了新的文献求助10
4秒前
科研通AI2S应助哈哈哈采纳,获得10
5秒前
一个西藏发布了新的文献求助10
5秒前
华仔应助单薄的发卡采纳,获得10
5秒前
liuye0202发布了新的文献求助20
6秒前
匡杰嘉完成签到,获得积分20
7秒前
89757完成签到,获得积分10
7秒前
Amber发布了新的文献求助10
8秒前
Owen应助三维码采纳,获得10
8秒前
吾系渣渣辉完成签到 ,获得积分10
8秒前
阿橘发布了新的文献求助30
8秒前
8秒前
8秒前
科目三应助鑫渊采纳,获得10
9秒前
10秒前
一二完成签到,获得积分10
10秒前
ddup发布了新的文献求助10
11秒前
望北完成签到 ,获得积分10
11秒前
11秒前
花開完成签到,获得积分10
12秒前
某某发布了新的文献求助10
13秒前
victhr发布了新的文献求助10
13秒前
SciGPT应助水123采纳,获得10
13秒前
eric888应助YULIA采纳,获得100
14秒前
FashionBoy应助悦耳的乐松采纳,获得10
14秒前
Henry发布了新的文献求助20
15秒前
Niaobo关注了科研通微信公众号
15秒前
伍寒烟完成签到,获得积分10
16秒前
17秒前
19秒前
YULIA完成签到,获得积分10
19秒前
candy6663339完成签到,获得积分10
19秒前
KK发布了新的文献求助10
19秒前
zyyy应助yoowo采纳,获得20
20秒前
万能图书馆应助yeliya99采纳,获得10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603909
求助须知:如何正确求助?哪些是违规求助? 4688768
关于积分的说明 14856065
捐赠科研通 4695384
什么是DOI,文献DOI怎么找? 2541023
邀请新用户注册赠送积分活动 1507167
关于科研通互助平台的介绍 1471832