A Driver Injury Prediction Model based on Genetic Algorithm and BP Neural Network

人工神经网络 支持向量机 计算机科学 遗传算法 可靠性(半导体) 机器学习 人工智能 算法 功率(物理) 物理 量子力学
作者
Ying Lu,Rong Kuang
标识
DOI:10.1109/ictis60134.2023.10243825
摘要

In order to improve the survival rate of the injured in the accident, many vehicles are now equipped with automatic crash notification system (ACNS) in vehicle. As the core of the system, the driver injury prediction model can predict the driver's injury category in time and send the injury situation to the emergency medical institution. The medical institution arranges the optimal rescue team and hospital according to the injury situation obtained by the algorithm, which greatly reduces the economic loss and mortality caused by the accident. This paper mainly studies the severity of driver injury. Using the annual data from 2019 National Highway Traffic Safety Administration (NHTSA) Fatality Analysis Reporting System (FARS), from which 10 variables such as driver injury, driver age and height were extracted, and the correlation between each independent variable and dependent variable was analyzed to increase the reliability and prediction accuracy of the network model adopted in this paper. In this paper, the combination of genetic algorithm and BP neural network was used to build a driver injury prediction model with machine learning. Compared with support vector machines (SVM), long short-term memory (LSTM), traditional BP neural network and logistic linear model, the accuracy was improved by 11.78%, 6.54%, 7.08% and 13.78% respectively. The research results can be used to improve the algorithm and performance of the enterprise call center in the advanced vehicle collision automatic call system, and finally can effectively improve the efficiency of accident rescue.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
starscars完成签到 ,获得积分10
1秒前
CodeCraft应助文静的夜梅采纳,获得10
1秒前
3秒前
3秒前
Aurora发布了新的文献求助10
3秒前
5秒前
孤独天奇发布了新的文献求助10
6秒前
6秒前
8秒前
kingwill发布了新的文献求助30
8秒前
yy发布了新的文献求助10
10秒前
听春风发布了新的文献求助10
10秒前
echo发布了新的文献求助10
12秒前
12秒前
14秒前
肥奇力应助shaangu623采纳,获得30
15秒前
16秒前
crazy完成签到,获得积分10
16秒前
16秒前
今天你读文献了吗完成签到,获得积分10
17秒前
优雅灵波完成签到,获得积分10
18秒前
19秒前
仁爱的冰夏完成签到,获得积分10
19秒前
Pearl发布了新的文献求助10
19秒前
echo完成签到,获得积分10
21秒前
21秒前
grzzz完成签到,获得积分10
22秒前
ttyhtg完成签到,获得积分10
22秒前
蔷薇发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
23秒前
Lyuhng+1完成签到 ,获得积分10
25秒前
无极微光应助henry采纳,获得20
26秒前
勤恳的德地完成签到,获得积分10
26秒前
凯瑞发布了新的文献求助10
27秒前
优雅灵波发布了新的文献求助10
28秒前
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600729
求助须知:如何正确求助?哪些是违规求助? 4686290
关于积分的说明 14842868
捐赠科研通 4677642
什么是DOI,文献DOI怎么找? 2538917
邀请新用户注册赠送积分活动 1505884
关于科研通互助平台的介绍 1471229