A Driver Injury Prediction Model based on Genetic Algorithm and BP Neural Network

人工神经网络 支持向量机 计算机科学 遗传算法 可靠性(半导体) 机器学习 人工智能 算法 功率(物理) 物理 量子力学
作者
Ying Lu,Rong Kuang
标识
DOI:10.1109/ictis60134.2023.10243825
摘要

In order to improve the survival rate of the injured in the accident, many vehicles are now equipped with automatic crash notification system (ACNS) in vehicle. As the core of the system, the driver injury prediction model can predict the driver's injury category in time and send the injury situation to the emergency medical institution. The medical institution arranges the optimal rescue team and hospital according to the injury situation obtained by the algorithm, which greatly reduces the economic loss and mortality caused by the accident. This paper mainly studies the severity of driver injury. Using the annual data from 2019 National Highway Traffic Safety Administration (NHTSA) Fatality Analysis Reporting System (FARS), from which 10 variables such as driver injury, driver age and height were extracted, and the correlation between each independent variable and dependent variable was analyzed to increase the reliability and prediction accuracy of the network model adopted in this paper. In this paper, the combination of genetic algorithm and BP neural network was used to build a driver injury prediction model with machine learning. Compared with support vector machines (SVM), long short-term memory (LSTM), traditional BP neural network and logistic linear model, the accuracy was improved by 11.78%, 6.54%, 7.08% and 13.78% respectively. The research results can be used to improve the algorithm and performance of the enterprise call center in the advanced vehicle collision automatic call system, and finally can effectively improve the efficiency of accident rescue.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XuNan完成签到,获得积分10
1秒前
lyf完成签到 ,获得积分10
1秒前
1秒前
白日梦完成签到,获得积分10
4秒前
烟消云散完成签到,获得积分10
7秒前
白日梦发布了新的文献求助10
7秒前
望向天空的鱼完成签到 ,获得积分10
8秒前
叶子完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
11秒前
i2stay完成签到,获得积分10
14秒前
zhang完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
23秒前
maxthon完成签到,获得积分10
26秒前
好学的泷泷完成签到 ,获得积分10
29秒前
flac完成签到,获得积分10
31秒前
yk完成签到 ,获得积分10
34秒前
zhugao完成签到,获得积分10
37秒前
123完成签到 ,获得积分10
41秒前
彪壮的幻丝完成签到 ,获得积分10
42秒前
Kai完成签到 ,获得积分10
43秒前
风信子deon01完成签到,获得积分10
45秒前
化学喵完成签到 ,获得积分10
46秒前
xh完成签到 ,获得积分10
49秒前
量子星尘发布了新的文献求助10
50秒前
不可靠月亮完成签到,获得积分10
51秒前
Johnlian完成签到 ,获得积分10
54秒前
眼睛大羽毛完成签到,获得积分10
55秒前
顾矜应助LIZHEN采纳,获得10
57秒前
到底是谁还在做牛马完成签到 ,获得积分10
58秒前
GXW完成签到,获得积分10
59秒前
嘟嘟豆806完成签到 ,获得积分10
1分钟前
白昼の月完成签到 ,获得积分0
1分钟前
量子星尘发布了新的文献求助10
1分钟前
可靠月亮完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
开心浩阑应助科研通管家采纳,获得10
1分钟前
开心浩阑应助科研通管家采纳,获得10
1分钟前
梦月完成签到,获得积分10
1分钟前
bi完成签到 ,获得积分10
1分钟前
onevip完成签到,获得积分0
1分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584832
求助须知:如何正确求助?哪些是违规求助? 4668720
关于积分的说明 14771649
捐赠科研通 4615679
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467575