亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Driver Injury Prediction Model based on Genetic Algorithm and BP Neural Network

人工神经网络 支持向量机 计算机科学 遗传算法 可靠性(半导体) 机器学习 人工智能 算法 功率(物理) 物理 量子力学
作者
Ying Lu,Rong Kuang
标识
DOI:10.1109/ictis60134.2023.10243825
摘要

In order to improve the survival rate of the injured in the accident, many vehicles are now equipped with automatic crash notification system (ACNS) in vehicle. As the core of the system, the driver injury prediction model can predict the driver's injury category in time and send the injury situation to the emergency medical institution. The medical institution arranges the optimal rescue team and hospital according to the injury situation obtained by the algorithm, which greatly reduces the economic loss and mortality caused by the accident. This paper mainly studies the severity of driver injury. Using the annual data from 2019 National Highway Traffic Safety Administration (NHTSA) Fatality Analysis Reporting System (FARS), from which 10 variables such as driver injury, driver age and height were extracted, and the correlation between each independent variable and dependent variable was analyzed to increase the reliability and prediction accuracy of the network model adopted in this paper. In this paper, the combination of genetic algorithm and BP neural network was used to build a driver injury prediction model with machine learning. Compared with support vector machines (SVM), long short-term memory (LSTM), traditional BP neural network and logistic linear model, the accuracy was improved by 11.78%, 6.54%, 7.08% and 13.78% respectively. The research results can be used to improve the algorithm and performance of the enterprise call center in the advanced vehicle collision automatic call system, and finally can effectively improve the efficiency of accident rescue.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
大个应助散装洋芋采纳,获得10
18秒前
Summer完成签到 ,获得积分10
20秒前
23秒前
111完成签到 ,获得积分10
28秒前
散装洋芋发布了新的文献求助10
28秒前
把饭拼好给你完成签到 ,获得积分10
35秒前
45秒前
53秒前
哲别发布了新的文献求助10
56秒前
57秒前
阿兹卡班完成签到 ,获得积分10
57秒前
57秒前
1分钟前
怂宝儿发布了新的文献求助10
1分钟前
虚拟的画板完成签到 ,获得积分10
1分钟前
Joeswith发布了新的文献求助10
1分钟前
1233445完成签到,获得积分10
1分钟前
小鱼完成签到 ,获得积分10
1分钟前
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
Muhammad发布了新的文献求助10
1分钟前
Ree发布了新的文献求助30
1分钟前
Akim应助赣南橙采纳,获得10
1分钟前
科研通AI6应助Ree采纳,获得10
1分钟前
陆康完成签到 ,获得积分10
1分钟前
1分钟前
充电宝应助艺玲采纳,获得10
1分钟前
Muhammad发布了新的文献求助10
2分钟前
maher完成签到,获得积分10
2分钟前
2分钟前
2分钟前
艺玲发布了新的文献求助10
2分钟前
赣南橙发布了新的文献求助10
2分钟前
2分钟前
Muhammad发布了新的文献求助10
2分钟前
2分钟前
烂漫的绿茶完成签到 ,获得积分10
2分钟前
2分钟前
赣南橙完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554741
求助须知:如何正确求助?哪些是违规求助? 4639342
关于积分的说明 14656067
捐赠科研通 4581239
什么是DOI,文献DOI怎么找? 2512662
邀请新用户注册赠送积分活动 1487403
关于科研通互助平台的介绍 1458322