Optimization of HPLC CAD method for simultaneous analysis of different lipids in lipid nanoparticles with analytical QbD

设计质量 色谱法 化学 稳健性(进化) Box-Behnken设计 实验设计 线性 固体脂质纳米粒 响应面法 蒙特卡罗方法 药物输送 粒径 数学 统计 物理化学 有机化学 物理 基因 量子力学 生物化学
作者
Ki‐Hyun Kim,Ji Eun Lee,Jae‐Chul Lee,Ravi Maharjan,Suhyun Oh,Kyeong Lee,Nam Ah Kim,Seong Hoon Jeong
出处
期刊:Journal of Chromatography A [Elsevier]
卷期号:1709: 464375-464375 被引量:3
标识
DOI:10.1016/j.chroma.2023.464375
摘要

Since lipid nanoparticles (LNP) have emerged as a potent drug delivery system, the objective of this study was to develop and optimize a robust high-performance liquid chromatography with charged aerosol detectors (HPLCCAD) method to simultaneously quantify different lipids in LNPs using the analytical quality by design (AQbD) approach. After defining analytical target profile (ATP), critical method attributes (CMAs) were established as a resolution between the closely eluting lipid peaks and the total analysis time. Thus, potential high-risk method parameters were identified through the initial risk assessment. These parameters were screened using Plackett-Burman design, and three critical method parameters (CMPs)-MeOH ratio, flow rate, and column temperature-were selected for further optimization. Box-Behnken design was employed to develop the quadratic models that explain the relationship between the CMPs and CMAs and to determine the optimal operating conditions. Moreover, to ensure the robustness of the developed method, a method operable design region (MODR) was established using the Monte Carlo simulation. The MODR was identified within the probability map, where the risk of failure to achieve the desired CMAs was less than 1%. The optimized method was validated according to the ICH guidelines (linearity: R2 > 0.995, accuracy: 97.15-100.48% recovery, precision: RSD < 5%) and successfully applied for the analysis of the lipid in the LNP samples. The development of the analytical method to quantify the lipids is essential for the formulation development and quality control of LNP-based drugs since the potency of LNPs is significantly dependent on the compositions and contents of the lipids in the formation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分20
1秒前
阳佟雨南完成签到,获得积分10
1秒前
喜悦的冰菱完成签到,获得积分10
2秒前
RCrisp发布了新的文献求助10
2秒前
Hui发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
Zggzs发布了新的文献求助30
4秒前
yqqqqq发布了新的文献求助10
5秒前
小蘑菇应助ROGER采纳,获得10
5秒前
orixero应助cccr02采纳,获得10
5秒前
5秒前
深情安青应助夏天采纳,获得10
5秒前
孙琳完成签到,获得积分20
6秒前
小C发布了新的文献求助10
6秒前
6秒前
朱大帅完成签到,获得积分10
6秒前
RYChiju完成签到,获得积分10
6秒前
研友_r8YKvn完成签到,获得积分10
7秒前
淡淡47完成签到,获得积分20
9秒前
X先生完成签到,获得积分10
9秒前
9秒前
山海发布了新的文献求助10
9秒前
来日方长应助玙凡采纳,获得10
10秒前
seele完成签到,获得积分10
11秒前
酸菜萌萌鱼完成签到,获得积分20
11秒前
11秒前
JHcHuN发布了新的文献求助10
11秒前
11秒前
11秒前
玉林发布了新的文献求助20
11秒前
12秒前
SciGPT应助简单灵凡采纳,获得10
12秒前
英姑应助笑哈哈采纳,获得30
13秒前
标致代真完成签到,获得积分10
14秒前
17应助ohhhh采纳,获得10
14秒前
RCrisp完成签到,获得积分10
14秒前
Jun应助JHcHuN采纳,获得10
14秒前
冷傲初夏发布了新的文献求助10
14秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
麻省总医院内科手册(原著第8版) (美)马克S.萨巴蒂尼,英文版即可,因为没有中文版。 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156631
求助须知:如何正确求助?哪些是违规求助? 2808058
关于积分的说明 7876045
捐赠科研通 2466421
什么是DOI,文献DOI怎么找? 1312876
科研通“疑难数据库(出版商)”最低求助积分说明 630299
版权声明 601919