亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Edge-Enhanced Dense Network Based on Attention for Low-Dose CT Denoising

人工智能 平滑的 计算机科学 索贝尔算子 核(代数) 卷积神经网络 降噪 特征提取 特征(语言学) 模式识别(心理学) 噪音(视频) GSM演进的增强数据速率 计算机视觉 图像复原 像素 卷积(计算机科学) 边缘检测 图像(数学) 人工神经网络 图像处理 数学 语言学 哲学 组合数学
作者
Lei Zhang,Jianshe Xiong,Yuezhong Zhou
标识
DOI:10.1109/icivc58118.2023.10270069
摘要

In recent years, due to the influence of the new crown pneumonia, the problem of low-dose CT image denoising has become a hot research direction. With the rapid development of deep learning technology, many algorithms that apply convolutional neural networks to this have also obtained good results. However, the current denoising algorithms still have problems such as excessive smoothing of images and obvious noise. Influenced by EDCNN network, in this algorithm, an edge-enhanced dense network based on attention mechanism (EDACNN) is proposed. In the network model, it is proposed to extract image features using attention mechanism and learnable Sobel convolutional kernel. The learnable Sobel convolution kernel enables good feature extraction where the edges of the image are uneven. The attention mechanisms introduced include channel attention mechanism and spatial attention mechanism. Not only can the channel attention mechanism feedback each pixel of the image in the process of feature extraction, but also it can pay attention to the largest feature point in the image. The spatial attention mechanism can focus on areas of the image where feature information is rich. Compared with the existing low-dose CT image denoising algorithm, the proposed model has significant improvement in all aspects of the denoising image.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
务实书包完成签到,获得积分10
5秒前
爆米花应助小智采纳,获得10
6秒前
9秒前
浮游应助激情的代曼采纳,获得10
11秒前
aaron完成签到,获得积分10
12秒前
15秒前
17秒前
小龙完成签到,获得积分10
19秒前
斯文败类应助科研猫头鹰采纳,获得10
21秒前
小智发布了新的文献求助10
22秒前
nxy完成签到 ,获得积分10
26秒前
Owen应助EaRnn采纳,获得10
27秒前
玫瑰遇上奶油完成签到 ,获得积分10
39秒前
赵雨欣完成签到,获得积分10
41秒前
50秒前
51秒前
小巧尔曼完成签到,获得积分10
51秒前
51秒前
EaRnn发布了新的文献求助10
55秒前
chenzheng发布了新的文献求助10
57秒前
可爱的函函应助Karma采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
1分钟前
William_l_c完成签到,获得积分10
1分钟前
CipherSage应助Karma采纳,获得10
1分钟前
KaK完成签到,获得积分20
1分钟前
小二郎应助美满惜寒采纳,获得10
1分钟前
1分钟前
sunny发布了新的文献求助10
1分钟前
edtaa完成签到 ,获得积分10
1分钟前
飘逸的雁露完成签到,获得积分10
1分钟前
2分钟前
美满惜寒发布了新的文献求助10
2分钟前
汉堡包应助契合采纳,获得10
2分钟前
CATH完成签到 ,获得积分10
2分钟前
momo完成签到,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413082
求助须知:如何正确求助?哪些是违规求助? 4530302
关于积分的说明 14122792
捐赠科研通 4445232
什么是DOI,文献DOI怎么找? 2439148
邀请新用户注册赠送积分活动 1431216
关于科研通互助平台的介绍 1408578