Light mixed‐supervised segmentation for 3D medical image data

计算机科学 人工智能 分割 最小边界框 注释 杠杆(统计) 体素 判别式 模式识别(心理学) 监督学习 医学影像学 轮廓 机器学习 计算机视觉 人工神经网络 图像(数学) 计算机图形学(图像)
作者
Hongxu Yang,Tao Tan,Pal Tegzes,Xiaomeng Dong,Rajesh Tamada,Lehel Ferenczi,Gopal Avinash
出处
期刊:Medical Physics [Wiley]
卷期号:51 (1): 167-178
标识
DOI:10.1002/mp.16816
摘要

Abstract Background Accurate 3D semantic segmentation models are essential for many clinical applications. To train a model for 3D segmentation, voxel‐level annotation is necessary, which is expensive to obtain due to laborious work and privacy protection. To accurately annotate 3D medical data, such as MRI, a common practice is to annotate the volumetric data in a slice‐by‐slice contouring way along principal axes. Purpose In order to reduce the annotation effort in slices, weakly supervised learning with a bounding box (Bbox) was proposed to leverage the discriminating information via a tightness prior assumption. Nevertheless, this method requests accurate and tight Bboxes, which will significantly drop the performance when tightness is not held, that is when a relaxed Bbox is applied. Therefore, there is a need to train a stable model based on relaxed Bbox annotation. Methods This paper presents a mixed‐supervised training strategy to reduce the annotation effort for 3D segmentation tasks. In the proposed approach, a fully annotated contour is only required for a single slice of the volume. In contrast, the rest of the slices with targets are annotated with relaxed Bboxes. This mixed‐supervised method adopts fully supervised learning, relaxed Bbox prior, and contrastive learning during the training, which ensures the network exploits the discriminative information of the training volumes properly. The proposed method was evaluated on two public 3D medical imaging datasets (MRI prostate dataset and Vestibular Schwannoma [VS] dataset). Results The proposed method obtained a high segmentation Dice score of 85.3% on an MRI prostate dataset and 83.3% on a VS dataset with relaxed Bbox annotation, which are close to a fully supervised model. Moreover, with the same relaxed Bbox annotations, the proposed method outperforms the state‐of‐the‐art methods. More importantly, the model performance is stable when the accuracy of Bbox annotation varies. Conclusions The presented study proposes a method based on a mixed‐supervised learning method in 3D medical imaging. The benefit will be stable segmentation of the target in 3D images with low accurate annotation requirement, which leads to easier model training on large‐scale datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
laber应助科研通管家采纳,获得50
4秒前
和平使命应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
和平使命应助科研通管家采纳,获得10
4秒前
和平使命应助科研通管家采纳,获得10
5秒前
橘子海完成签到 ,获得积分10
9秒前
9秒前
mojito完成签到 ,获得积分10
13秒前
why发布了新的文献求助10
13秒前
村上春树的摩的完成签到 ,获得积分10
18秒前
why完成签到,获得积分10
23秒前
欢呼的茗茗完成签到 ,获得积分10
23秒前
搜集达人应助拙青采纳,获得10
24秒前
qianci2009完成签到,获得积分10
26秒前
abcdefg发布了新的文献求助10
29秒前
先锋老刘001完成签到,获得积分10
31秒前
晓薇完成签到,获得积分10
35秒前
LJ_2完成签到 ,获得积分10
39秒前
Tonald Yang完成签到 ,获得积分20
42秒前
积极的中蓝完成签到 ,获得积分10
43秒前
liciky完成签到 ,获得积分10
44秒前
北城完成签到 ,获得积分10
47秒前
58秒前
拙青发布了新的文献求助10
1分钟前
Rachel完成签到,获得积分10
1分钟前
健壮惋清完成签到 ,获得积分10
1分钟前
sandyleung完成签到,获得积分20
1分钟前
Cyber_relic完成签到,获得积分10
1分钟前
脱壳金蝉完成签到,获得积分10
1分钟前
1分钟前
失眠的向日葵完成签到 ,获得积分10
1分钟前
Sean完成签到 ,获得积分10
1分钟前
nini发布了新的文献求助10
1分钟前
1分钟前
1分钟前
阿白完成签到 ,获得积分10
1分钟前
zhaohu47完成签到,获得积分10
1分钟前
元小夏完成签到,获得积分10
1分钟前
Much完成签到 ,获得积分10
1分钟前
百里如雪发布了新的文献求助10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674477
求助须知:如何正确求助?哪些是违规求助? 3229813
关于积分的说明 9787101
捐赠科研通 2940367
什么是DOI,文献DOI怎么找? 1611886
邀请新用户注册赠送积分活动 761060
科研通“疑难数据库(出版商)”最低求助积分说明 736471