Sentiment analysis of imbalanced datasets using BERT and ensemble stacking for deep learning

计算机科学 情绪分析 人工智能 机器学习 重采样 文字嵌入 互联网 自然语言处理 深度学习 嵌入 集成学习 万维网
作者
Nassera Habbat,Nouri Hicham,Houda Anoun,Larbi Hassouni
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:126: 106999-106999 被引量:18
标识
DOI:10.1016/j.engappai.2023.106999
摘要

The Internet is a crucial way to share information in both personal and professional areas. Sentiment analysis attracts great interest in marketing, research, and business today. The instability faced by imbalanced datasets on sentiment analysis is examined in this research. Balancing the datasets using techniques based on under-sampling and over-sampling is examined to achieve more efficient classification results as the effects of using BERT as word embedding and ensemble learning methods for classification. The effects of the resampling training set algorithms on different deep learning classifiers were investigated using BERT as a word embedding model and Cohen's kappa, accuracy, ROC-AUC curve, and MCC as evaluation metrics with k-fold validation on three sentiment analysis datasets containing English, Arabic, and Moroccan Arabic Dialect texts. Also, we did those performance metrics for all models when scaling the dataset for training and testing, and we calculated the memory and the execution time for each model. Finally, we analyzed the National Office of Railways of Morocco (ONCF) customers' Facebook comments in Modern Standard Arabic (MSA) and MD to determine customer satisfaction as positive, negative, and neutral comments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助123采纳,获得10
刚刚
科研通AI6应助苏莉婷采纳,获得10
1秒前
苗条的钻石应助雪雪啊采纳,获得10
1秒前
科研通AI6应助Hielo采纳,获得10
1秒前
浮游应助呆呆采纳,获得10
1秒前
2秒前
3秒前
斯文哈密瓜完成签到,获得积分10
4秒前
4秒前
4秒前
ray发布了新的文献求助10
4秒前
XXXTTT完成签到,获得积分10
4秒前
英俊的铭应助qwer采纳,获得10
5秒前
li发布了新的文献求助10
5秒前
5秒前
Psycho完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
隐形曼青应助ran采纳,获得10
6秒前
上官若男应助内向煎蛋采纳,获得10
7秒前
Akim应助T拐拐采纳,获得10
7秒前
8秒前
aodilee应助邱穗采纳,获得10
8秒前
王大雪发布了新的文献求助30
8秒前
9秒前
朱朱发布了新的文献求助10
10秒前
ktssly发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
13秒前
13秒前
Silence完成签到,获得积分0
13秒前
14秒前
Ava应助Jayee采纳,获得10
14秒前
lucky发布了新的文献求助20
14秒前
junjun发布了新的文献求助10
15秒前
李健应助Leon采纳,获得10
15秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409878
求助须知:如何正确求助?哪些是违规求助? 4527416
关于积分的说明 14110521
捐赠科研通 4441833
什么是DOI,文献DOI怎么找? 2437651
邀请新用户注册赠送积分活动 1429598
关于科研通互助平台的介绍 1407728