Sentiment analysis of imbalanced datasets using BERT and ensemble stacking for deep learning

计算机科学 情绪分析 人工智能 机器学习 重采样 文字嵌入 互联网 自然语言处理 深度学习 嵌入 集成学习 万维网
作者
Nassera Habbat,Nouri Hicham,Houda Anoun,Larbi Hassouni
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:126: 106999-106999 被引量:18
标识
DOI:10.1016/j.engappai.2023.106999
摘要

The Internet is a crucial way to share information in both personal and professional areas. Sentiment analysis attracts great interest in marketing, research, and business today. The instability faced by imbalanced datasets on sentiment analysis is examined in this research. Balancing the datasets using techniques based on under-sampling and over-sampling is examined to achieve more efficient classification results as the effects of using BERT as word embedding and ensemble learning methods for classification. The effects of the resampling training set algorithms on different deep learning classifiers were investigated using BERT as a word embedding model and Cohen's kappa, accuracy, ROC-AUC curve, and MCC as evaluation metrics with k-fold validation on three sentiment analysis datasets containing English, Arabic, and Moroccan Arabic Dialect texts. Also, we did those performance metrics for all models when scaling the dataset for training and testing, and we calculated the memory and the execution time for each model. Finally, we analyzed the National Office of Railways of Morocco (ONCF) customers' Facebook comments in Modern Standard Arabic (MSA) and MD to determine customer satisfaction as positive, negative, and neutral comments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
12完成签到 ,获得积分10
1秒前
1秒前
3秒前
莽哥发布了新的文献求助10
3秒前
momo完成签到,获得积分10
3秒前
3秒前
端庄的晓山完成签到,获得积分10
5秒前
Jerry20184完成签到 ,获得积分10
5秒前
6秒前
子南发布了新的文献求助10
7秒前
7秒前
lichanshen完成签到,获得积分10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
传奇3应助信仰采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
9秒前
fighting应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
Maestro_S发布了新的文献求助10
9秒前
田様应助科研通管家采纳,获得30
9秒前
李健应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
9秒前
烟花应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284055
求助须知:如何正确求助?哪些是违规求助? 4437688
关于积分的说明 13814537
捐赠科研通 4318612
什么是DOI,文献DOI怎么找? 2370475
邀请新用户注册赠送积分活动 1365895
关于科研通互助平台的介绍 1329363