Differentiating Gastrointestinal Stromal Tumors From Leiomyomas of Upper Digestive Tract Using Convolutional Neural Network Model by Endoscopic Ultrasonography

医学 主旨 平滑肌瘤 内镜超声检查 卷积神经网络 放射科 间质细胞 胃肠道 病理 内窥镜检查 人工智能 内科学 计算机科学
作者
Jing Liu,Jia Huang,Yan Song,Qi He,Weili Fang,Tao Wang,Zheng Zeng,Wentian Liu
出处
期刊:Journal of Clinical Gastroenterology [Ovid Technologies (Wolters Kluwer)]
卷期号:58 (6): 574-579 被引量:2
标识
DOI:10.1097/mcg.0000000000001907
摘要

Background: Gastrointestinal stromal tumors (GISTs) and leiomyomas are the most common submucosal tumors of the upper digestive tract, and the diagnosis of the tumors is essential for their treatment and prognosis. However, the ability of endoscopic ultrasonography (EUS) which could correctly identify the tumor types is limited and closely related to the knowledge, operational level, and experience of the endoscopists. Therefore, the convolutional neural network (CNN) is used to assist endoscopists in determining GISTs or leiomyomas with EUS. Materials and Methods: A model based on CNN was constructed according to GoogLeNet architecture to distinguish GISTs or leiomyomas. All EUS images collected from this study were randomly sampled and divided into training set (n=411) and testing set (n=103) in a ratio of 4:1. The CNN model was trained by EUS images from the training set, and the testing set was utilized to evaluate the performance of the CNN model. In addition, there were some comparisons between endoscopists and CNN models. Results: It was shown that the sensitivity and specificity in identifying leiomyoma were 95.92%, 94.44%, sensitivity and specificity in identifying GIST were 94.44%, 95.92%, and accuracy in total was 95.15% of the CNN model. It indicates that the diagnostic accuracy of the CNN model is equivalent to skilled endoscopists, or even higher than them. Conclusion: While identifying GIST or leiomyoma, the performance of CNN model was robust, which is highlighting its promising role in supporting less-experienced endoscopists and reducing interobserver agreement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伊蕾娜完成签到 ,获得积分10
5秒前
马大翔完成签到,获得积分10
6秒前
木木完成签到 ,获得积分10
6秒前
研友_ZAyqJZ完成签到,获得积分10
8秒前
9秒前
11秒前
EarholeDoctor完成签到,获得积分10
15秒前
Fei发布了新的文献求助30
16秒前
ybheart完成签到,获得积分10
22秒前
扬帆起航完成签到 ,获得积分10
24秒前
25秒前
这个硬盘完成签到 ,获得积分10
25秒前
研友_ndDGVn完成签到 ,获得积分10
35秒前
CLTTTt完成签到,获得积分10
36秒前
Yziii应助EarholeDoctor采纳,获得10
36秒前
whitepiece完成签到,获得积分10
37秒前
艾森豪威尔完成签到 ,获得积分10
37秒前
可爱的黄黄完成签到 ,获得积分10
38秒前
38秒前
39秒前
jbear完成签到 ,获得积分10
41秒前
安静成威完成签到 ,获得积分10
44秒前
Fei发布了新的文献求助30
44秒前
剑逍遥完成签到 ,获得积分10
49秒前
49秒前
现代的紫霜完成签到,获得积分10
51秒前
竹马完成签到 ,获得积分10
54秒前
Smoiy完成签到 ,获得积分10
54秒前
优雅含灵完成签到 ,获得积分10
55秒前
和平使命应助科研通管家采纳,获得20
59秒前
小九完成签到,获得积分10
1分钟前
牛奶面包完成签到 ,获得积分10
1分钟前
天菱完成签到 ,获得积分20
1分钟前
xiaoxiaoxingqiu完成签到 ,获得积分10
1分钟前
1分钟前
何晓俊发布了新的文献求助10
1分钟前
Even9完成签到,获得积分10
1分钟前
1分钟前
陈三亮完成签到 ,获得积分0
1分钟前
xwl9955发布了新的文献求助10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Regression-Based Normative Data for Psychological Assessment 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3099819
求助须知:如何正确求助?哪些是违规求助? 2751281
关于积分的说明 7612331
捐赠科研通 2403098
什么是DOI,文献DOI怎么找? 1275171
科研通“疑难数据库(出版商)”最低求助积分说明 616276
版权声明 599053