Differentiating Gastrointestinal Stromal Tumors From Leiomyomas of Upper Digestive Tract Using Convolutional Neural Network Model by Endoscopic Ultrasonography

医学 主旨 平滑肌瘤 内镜超声检查 卷积神经网络 放射科 间质细胞 胃肠道 病理 内窥镜检查 人工智能 内科学 计算机科学
作者
Jing Liu,Jia Huang,Yan Song,Qi He,Weili Fang,Tao Wang,Zhongqing Zheng,Wentian Liu
出处
期刊:Journal of Clinical Gastroenterology [Lippincott Williams & Wilkins]
卷期号:58 (6): 574-579 被引量:3
标识
DOI:10.1097/mcg.0000000000001907
摘要

Background: Gastrointestinal stromal tumors (GISTs) and leiomyomas are the most common submucosal tumors of the upper digestive tract, and the diagnosis of the tumors is essential for their treatment and prognosis. However, the ability of endoscopic ultrasonography (EUS) which could correctly identify the tumor types is limited and closely related to the knowledge, operational level, and experience of the endoscopists. Therefore, the convolutional neural network (CNN) is used to assist endoscopists in determining GISTs or leiomyomas with EUS. Materials and Methods: A model based on CNN was constructed according to GoogLeNet architecture to distinguish GISTs or leiomyomas. All EUS images collected from this study were randomly sampled and divided into training set (n=411) and testing set (n=103) in a ratio of 4:1. The CNN model was trained by EUS images from the training set, and the testing set was utilized to evaluate the performance of the CNN model. In addition, there were some comparisons between endoscopists and CNN models. Results: It was shown that the sensitivity and specificity in identifying leiomyoma were 95.92%, 94.44%, sensitivity and specificity in identifying GIST were 94.44%, 95.92%, and accuracy in total was 95.15% of the CNN model. It indicates that the diagnostic accuracy of the CNN model is equivalent to skilled endoscopists, or even higher than them. Conclusion: While identifying GIST or leiomyoma, the performance of CNN model was robust, which is highlighting its promising role in supporting less-experienced endoscopists and reducing interobserver agreement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
weiboo发布了新的文献求助10
5秒前
西西里柠檬完成签到,获得积分10
5秒前
8秒前
ENO_i发布了新的文献求助10
9秒前
11秒前
13秒前
14秒前
科研通AI5应助HJJHJH采纳,获得30
15秒前
wz完成签到,获得积分10
15秒前
19秒前
寻风完成签到,获得积分10
20秒前
劲秉应助Malone采纳,获得10
21秒前
111完成签到,获得积分10
25秒前
26秒前
26秒前
PP完成签到 ,获得积分10
27秒前
xzc完成签到 ,获得积分10
27秒前
31秒前
wxy完成签到,获得积分10
31秒前
34秒前
35秒前
SY完成签到,获得积分10
36秒前
RTena.完成签到,获得积分10
36秒前
陈峰琦发布了新的文献求助10
38秒前
du发布了新的文献求助10
38秒前
39秒前
40秒前
心灵美思卉完成签到,获得积分10
41秒前
44秒前
HJJHJH发布了新的文献求助30
45秒前
46秒前
科研通AI5应助陈峰琦采纳,获得10
47秒前
47秒前
微笑的天抒完成签到 ,获得积分10
52秒前
ty7889完成签到,获得积分10
52秒前
53秒前
yrh发布了新的文献求助10
53秒前
53秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673288
求助须知:如何正确求助?哪些是违规求助? 3229110
关于积分的说明 9783896
捐赠科研通 2939628
什么是DOI,文献DOI怎么找? 1611172
邀请新用户注册赠送积分活动 760809
科研通“疑难数据库(出版商)”最低求助积分说明 736290