Differentiating Gastrointestinal Stromal Tumors From Leiomyomas of Upper Digestive Tract Using Convolutional Neural Network Model by Endoscopic Ultrasonography

医学 主旨 平滑肌瘤 内镜超声检查 卷积神经网络 放射科 间质细胞 胃肠道 病理 内窥镜检查 人工智能 内科学 计算机科学
作者
Jing Liu,Jia Huang,Yan Song,Qi He,Weili Fang,Tao Wang,Zheng Zeng,Wentian Liu
出处
期刊:Journal of Clinical Gastroenterology [Ovid Technologies (Wolters Kluwer)]
卷期号:58 (6): 574-579 被引量:2
标识
DOI:10.1097/mcg.0000000000001907
摘要

Background: Gastrointestinal stromal tumors (GISTs) and leiomyomas are the most common submucosal tumors of the upper digestive tract, and the diagnosis of the tumors is essential for their treatment and prognosis. However, the ability of endoscopic ultrasonography (EUS) which could correctly identify the tumor types is limited and closely related to the knowledge, operational level, and experience of the endoscopists. Therefore, the convolutional neural network (CNN) is used to assist endoscopists in determining GISTs or leiomyomas with EUS. Materials and Methods: A model based on CNN was constructed according to GoogLeNet architecture to distinguish GISTs or leiomyomas. All EUS images collected from this study were randomly sampled and divided into training set (n=411) and testing set (n=103) in a ratio of 4:1. The CNN model was trained by EUS images from the training set, and the testing set was utilized to evaluate the performance of the CNN model. In addition, there were some comparisons between endoscopists and CNN models. Results: It was shown that the sensitivity and specificity in identifying leiomyoma were 95.92%, 94.44%, sensitivity and specificity in identifying GIST were 94.44%, 95.92%, and accuracy in total was 95.15% of the CNN model. It indicates that the diagnostic accuracy of the CNN model is equivalent to skilled endoscopists, or even higher than them. Conclusion: While identifying GIST or leiomyoma, the performance of CNN model was robust, which is highlighting its promising role in supporting less-experienced endoscopists and reducing interobserver agreement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
搜集达人应助RW采纳,获得10
2秒前
静影沉璧发布了新的文献求助10
3秒前
bkagyin应助Peng采纳,获得10
5秒前
阿坤完成签到,获得积分20
6秒前
金陵第一大美女完成签到,获得积分10
7秒前
11秒前
科研通AI2S应助无限大树采纳,获得10
11秒前
文静不斜完成签到,获得积分10
15秒前
17秒前
宰宰小熊发布了新的文献求助10
17秒前
8R60d8应助科研通管家采纳,获得20
17秒前
NPC应助科研通管家采纳,获得30
17秒前
彭于晏应助科研通管家采纳,获得10
17秒前
隐形曼青应助科研通管家采纳,获得10
18秒前
酷波er应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
8R60d8应助科研通管家采纳,获得10
18秒前
FashionBoy应助奋斗的杰采纳,获得10
28秒前
29秒前
21完成签到,获得积分10
32秒前
ssk完成签到,获得积分10
33秒前
星希完成签到 ,获得积分10
34秒前
科研通AI2S应助无限大树采纳,获得10
34秒前
Cwx2020完成签到,获得积分10
35秒前
sky发布了新的文献求助20
38秒前
qym完成签到,获得积分10
39秒前
39秒前
hh完成签到,获得积分10
42秒前
Chelsea发布了新的文献求助10
45秒前
46秒前
良辰给精明青寒的求助进行了留言
47秒前
是述不是沭完成签到,获得积分10
50秒前
科研通AI2S应助ccalvintan采纳,获得10
51秒前
53秒前
尚皇发布了新的文献求助10
56秒前
今后应助Chelsea采纳,获得10
58秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161827
求助须知:如何正确求助?哪些是违规求助? 2813059
关于积分的说明 7898411
捐赠科研通 2472080
什么是DOI,文献DOI怎么找? 1316331
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129