3DSleepNet: A Multi-Channel Bio-Signal Based Sleep Stages Classification Method Using Deep Learning

卷积神经网络 模式识别(心理学) 计算机科学 人工智能 脑电图 频域 图形 时域 睡眠(系统调用) 睡眠阶段 频道(广播) 语音识别 多导睡眠图 心理学 精神科 操作系统 理论计算机科学 计算机视觉 计算机网络
作者
X. Ji,Yan Li,Peng Wen
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:31: 3513-3523 被引量:9
标识
DOI:10.1109/tnsre.2023.3309542
摘要

A novel multi-channel-based 3D convolutional neural network (3D-CNN) is proposed in this paper to classify sleep stages. Time domain features, frequency domain features, and time-frequency domain features are extracted from electroencephalography (EEG), electromyogram (EMG), and electrooculogram (EOG) channels and fed into the 3D-CNN model to classify sleep stages. Intrinsic connections among different bio-signals and different frequency bands in time series and time-frequency are learned by 3D convolutional layers, while the frequency relations are learned by 2D convolutional layers. Partial dot-product attention layers help this model find the most important channels and frequency bands in different sleep stages. A long short-term memory unit is added to learn the transition rules among neighboring epochs. Classification experiments were conducted using both ISRUC-S3 datasets and ISRUC-S1, sleep-disorder datasets. The experimental results showed that the overall accuracy achieved 0.832 and the F1-score and Cohen’s kappa reached 0.814 and 0.783, respectively, on ISRUC-S3, which are a competitive classification performance with the state-of-the-art baselines. The overall accuracy, F1-score, and Cohen’s kappa on ISRUC-S1 achieved 0.820, 0.797, and 0.768, respectively, which also demonstrate its generality on unhealthy subjects. Further experiments were conducted on ISRUC-S3 subset to evaluate its training time. The training time on 10 subjects from ISRUC-S3 with 8549 epochs is 4493s, which indicates its highest calculation speed compared with the existing high-performance graph convolutional networks and U2-Net architecture algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
2秒前
2秒前
wwewew完成签到,获得积分10
3秒前
saying发布了新的文献求助10
3秒前
123123完成签到,获得积分10
3秒前
隐形曼青应助阿卡宁采纳,获得10
4秒前
负责紊完成签到,获得积分10
4秒前
善良的火发布了新的文献求助10
6秒前
haha完成签到,获得积分10
6秒前
8秒前
sugar完成签到,获得积分10
9秒前
活在当下完成签到,获得积分10
9秒前
11秒前
ssy发布了新的文献求助10
11秒前
小嘉贞完成签到,获得积分10
13秒前
鸡蛋黄完成签到,获得积分10
14秒前
温纲完成签到,获得积分10
15秒前
lalafish完成签到,获得积分10
15秒前
研友_nV2Kyn完成签到,获得积分10
16秒前
王冉冉发布了新的文献求助10
16秒前
铁甲小宝完成签到,获得积分10
17秒前
ssy完成签到,获得积分10
19秒前
低头应助gtt采纳,获得10
21秒前
芝士momoRIN完成签到,获得积分10
21秒前
wxx完成签到,获得积分10
22秒前
yar应助时尚的闭月采纳,获得10
23秒前
酷波er应助时尚的闭月采纳,获得10
23秒前
量子星尘发布了新的文献求助10
25秒前
zy完成签到 ,获得积分10
26秒前
花Cheung完成签到,获得积分10
26秒前
26秒前
26秒前
aliu完成签到,获得积分10
28秒前
小麻豆完成签到,获得积分10
28秒前
瓜农完成签到,获得积分10
29秒前
东篱发布了新的文献求助10
30秒前
科研通AI2S应助端己采纳,获得10
30秒前
香蕉觅云应助王冉冉采纳,获得10
32秒前
33秒前
Mmoler完成签到 ,获得积分10
34秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048