3DSleepNet: A Multi-Channel Bio-Signal Based Sleep Stages Classification Method Using Deep Learning

卷积神经网络 模式识别(心理学) 计算机科学 人工智能 脑电图 频域 图形 时域 睡眠(系统调用) 睡眠阶段 频道(广播) 语音识别 多导睡眠图 心理学 计算机网络 理论计算机科学 精神科 计算机视觉 操作系统
作者
X. Ji,Yan Li,Peng Wen
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:31: 3513-3523 被引量:9
标识
DOI:10.1109/tnsre.2023.3309542
摘要

A novel multi-channel-based 3D convolutional neural network (3D-CNN) is proposed in this paper to classify sleep stages. Time domain features, frequency domain features, and time-frequency domain features are extracted from electroencephalography (EEG), electromyogram (EMG), and electrooculogram (EOG) channels and fed into the 3D-CNN model to classify sleep stages. Intrinsic connections among different bio-signals and different frequency bands in time series and time-frequency are learned by 3D convolutional layers, while the frequency relations are learned by 2D convolutional layers. Partial dot-product attention layers help this model find the most important channels and frequency bands in different sleep stages. A long short-term memory unit is added to learn the transition rules among neighboring epochs. Classification experiments were conducted using both ISRUC-S3 datasets and ISRUC-S1, sleep-disorder datasets. The experimental results showed that the overall accuracy achieved 0.832 and the F1-score and Cohen’s kappa reached 0.814 and 0.783, respectively, on ISRUC-S3, which are a competitive classification performance with the state-of-the-art baselines. The overall accuracy, F1-score, and Cohen’s kappa on ISRUC-S1 achieved 0.820, 0.797, and 0.768, respectively, which also demonstrate its generality on unhealthy subjects. Further experiments were conducted on ISRUC-S3 subset to evaluate its training time. The training time on 10 subjects from ISRUC-S3 with 8549 epochs is 4493s, which indicates its highest calculation speed compared with the existing high-performance graph convolutional networks and U2-Net architecture algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cyl应助现代的竺采纳,获得30
1秒前
天天快乐应助xmsswph采纳,获得10
1秒前
sunyafei发布了新的文献求助10
2秒前
15发布了新的文献求助10
3秒前
灵巧尔云完成签到,获得积分10
6秒前
6秒前
威武大将军完成签到,获得积分20
8秒前
毕十三发布了新的文献求助10
9秒前
无花果应助楠楠2001采纳,获得10
10秒前
咕咕应助权志龙采纳,获得10
11秒前
正方形的瓜皮完成签到,获得积分10
11秒前
11秒前
九尾狐发布了新的文献求助20
11秒前
15完成签到,获得积分10
11秒前
孤独的凌翠完成签到,获得积分20
11秒前
12秒前
12秒前
凡凡发布了新的文献求助30
14秒前
orixero应助明亮冬易采纳,获得10
15秒前
16秒前
孤独的凌文完成签到,获得积分10
16秒前
852应助平淡南霜采纳,获得10
17秒前
18秒前
19秒前
accept完成签到,获得积分10
20秒前
酷波er应助毕十三采纳,获得10
21秒前
jasonjiang完成签到 ,获得积分10
24秒前
笨蛋没烦恼完成签到 ,获得积分10
25秒前
27秒前
斯文败类应助青黛采纳,获得10
27秒前
28秒前
大个应助Jason采纳,获得10
28秒前
蒋楚涵完成签到,获得积分10
28秒前
24号甜冰茶完成签到,获得积分10
29秒前
中和皇极应助Valky采纳,获得10
30秒前
31秒前
好丽友发布了新的文献求助30
31秒前
若尘完成签到 ,获得积分10
32秒前
34秒前
34秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462718
求助须知:如何正确求助?哪些是违规求助? 3056227
关于积分的说明 9051055
捐赠科研通 2745844
什么是DOI,文献DOI怎么找? 1506627
科研通“疑难数据库(出版商)”最低求助积分说明 696181
邀请新用户注册赠送积分活动 695700