3DSleepNet: A Multi-Channel Bio-Signal Based Sleep Stages Classification Method Using Deep Learning

卷积神经网络 模式识别(心理学) 计算机科学 人工智能 脑电图 频域 图形 时域 睡眠(系统调用) 睡眠阶段 频道(广播) 语音识别 多导睡眠图 心理学 计算机网络 理论计算机科学 精神科 计算机视觉 操作系统
作者
X. Ji,Yan Li,Peng Wen
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:31: 3513-3523 被引量:9
标识
DOI:10.1109/tnsre.2023.3309542
摘要

A novel multi-channel-based 3D convolutional neural network (3D-CNN) is proposed in this paper to classify sleep stages. Time domain features, frequency domain features, and time-frequency domain features are extracted from electroencephalography (EEG), electromyogram (EMG), and electrooculogram (EOG) channels and fed into the 3D-CNN model to classify sleep stages. Intrinsic connections among different bio-signals and different frequency bands in time series and time-frequency are learned by 3D convolutional layers, while the frequency relations are learned by 2D convolutional layers. Partial dot-product attention layers help this model find the most important channels and frequency bands in different sleep stages. A long short-term memory unit is added to learn the transition rules among neighboring epochs. Classification experiments were conducted using both ISRUC-S3 datasets and ISRUC-S1, sleep-disorder datasets. The experimental results showed that the overall accuracy achieved 0.832 and the F1-score and Cohen’s kappa reached 0.814 and 0.783, respectively, on ISRUC-S3, which are a competitive classification performance with the state-of-the-art baselines. The overall accuracy, F1-score, and Cohen’s kappa on ISRUC-S1 achieved 0.820, 0.797, and 0.768, respectively, which also demonstrate its generality on unhealthy subjects. Further experiments were conducted on ISRUC-S3 subset to evaluate its training time. The training time on 10 subjects from ISRUC-S3 with 8549 epochs is 4493s, which indicates its highest calculation speed compared with the existing high-performance graph convolutional networks and U2-Net architecture algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
红柚完成签到,获得积分10
2秒前
2秒前
李爱国应助tdtk采纳,获得10
2秒前
Lxxixixi发布了新的文献求助10
2秒前
刘凯完成签到,获得积分10
3秒前
科研通AI6应助yl采纳,获得10
3秒前
CR7应助乌冬面采纳,获得20
3秒前
3秒前
3秒前
小白发布了新的文献求助20
3秒前
4秒前
就这样完成签到 ,获得积分10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
5秒前
5秒前
zhazhalaoke应助科研通管家采纳,获得10
5秒前
zhazhalaoke应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
5秒前
思源应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
聪慧小霜应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
聪慧小霜应助科研通管家采纳,获得10
6秒前
1111应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
聪慧小霜应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
missme应助科研通管家采纳,获得20
6秒前
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
7秒前
jie酱拌面应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604564
求助须知:如何正确求助?哪些是违规求助? 4012871
关于积分的说明 12425263
捐赠科研通 3693482
什么是DOI,文献DOI怎么找? 2036342
邀请新用户注册赠送积分活动 1069364
科研通“疑难数据库(出版商)”最低求助积分说明 953871