计算机科学
脑电图
稳健性(进化)
脑-机接口
人工智能
可用性
学习迁移
机器学习
特征(语言学)
代表(政治)
一般化
特征学习
校准
模式识别(心理学)
人机交互
心理学
数学
数学分析
生物化学
化学
语言学
哲学
统计
精神科
政治
政治学
法学
基因
作者
Ji-Wung Han,Soyeon Bak,Jun-Mo Kim,WooHyeok Choi,Dong-Hee Shin,Young-Han Son,Tae‐Eui Kam
标识
DOI:10.1016/j.eswa.2023.121986
摘要
Transfer learning for motor imagery-based brain-computer interfaces (MI-BCIs) struggles with inter-subject variability, hindering its generalization to new users. This paper proposes an advanced implicit transfer learning framework, META-EEG, designed to overcome the challenge arising from inter-subject variability. By incorporating gradient-based meta-learning with an intermittent freezing strategy, META-EEG ensures efficient feature representation learning, providing a robust zero-calibration solution. A comparative analysis reveals that META-EEG significantly outperforms all the baseline methods and competing methods on three different public datasets. Moreover, we demonstrate the efficiency of the proposed model through a neurophysiological and feature-representational analysis. With its robustness and superior performance on challenging datasets, META-EEG provides an effective solution for calibration-free MI-EEG classification, facilitating broader usability.
科研通智能强力驱动
Strongly Powered by AbleSci AI