Simulated and Experimental Research on Highly Efficient Sound Absorption of Low‐Frequency Broadband Acoustic Metamaterial Based on Coiled‐Up Space

超材料 声学 宽带 材料科学 带宽(计算) 吸收(声学) 低频 次声 噪声控制 声衰减 声能 频带 声波 声学空间 光学 降噪 物理 计算机科学 声音(地理) 衰减 电信 光电子学
作者
Mengtao Liang,Haowei Wu,Siwei Chen,Zeming Fu,Rongshan Zhang,Ziwen Xing
出处
期刊:Advanced Engineering Materials [Wiley]
卷期号:25 (22) 被引量:1
标识
DOI:10.1002/adem.202301221
摘要

Acoustic metamaterials are broadly employed in vibration and noise reduction fields for large defense industrial equipment such as engines and compressors thanks to their excellent subwavelength characteristics and extraordinary acoustic performance. However, the low‐frequency broadband sound absorption remains a thorny challenge in the scientific and engineering communities. This paper focuses on the low‐frequency broadband acoustic metamaterial composed of eight spiral absorbers coupled in two rows, researching its thermoviscous dissipation and sound absorption mechanism, and further analyzing its sound absorption characteristics. In the frequency range of 510–990 Hz, the average sound absorption coefficient of acoustic metamaterial with sound absorption area ratio of 2.72% reaches 0.80, and the cross‐sectional height is only 34 mm, which achieves the tradeoffs between structural thickness, frequency bandwidth and sound absorption performance. Furthermore, continuous and highly efficient broadband sound absorption within the target frequency band in practical applications can be achieved by optimizing adjustable parameters. In addition, finite element simulations are verified by experiments, which presents good agreement. Compared with traditional sound absorbing structure, the low‐frequency broadband acoustic metamaterial proposed in this paper owns the characteristics of small size and easy processing, which has broad application prospects in the field of low‐frequency noise control engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
star应助可耐的问柳采纳,获得100
1秒前
hsa_ID完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
在水一方应助如意剑身采纳,获得10
2秒前
3秒前
黄黄黄哈完成签到,获得积分10
3秒前
小猪发布了新的文献求助10
3秒前
rj完成签到 ,获得积分10
3秒前
王不王发布了新的文献求助10
3秒前
3秒前
不懈奋进应助Qing采纳,获得30
4秒前
HJJHJH发布了新的文献求助10
4秒前
4秒前
科目三应助zhiyao2025采纳,获得10
5秒前
5秒前
DamenS发布了新的文献求助10
5秒前
称心千凝完成签到,获得积分10
6秒前
孤独的狼发布了新的文献求助10
6秒前
7秒前
执念发布了新的文献求助10
7秒前
Nemo1234发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
8秒前
yxy完成签到,获得积分10
9秒前
wangjuan完成签到,获得积分10
9秒前
9秒前
洁净听荷完成签到,获得积分10
9秒前
9秒前
9秒前
ruby发布了新的文献求助10
10秒前
CWT完成签到,获得积分10
10秒前
宇文霆发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
Elgar Concise Encyclopedia of Polar Law 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4905490
求助须知:如何正确求助?哪些是违规求助? 4183360
关于积分的说明 12990057
捐赠科研通 3949603
什么是DOI,文献DOI怎么找? 2166023
邀请新用户注册赠送积分活动 1184504
关于科研通互助平台的介绍 1090823