Direct deep learning-based survival prediction from pre-interventional CT prior to transcatheter aortic valve replacement

医学 比例危险模型 生存分析 自编码 阀门更换 心脏病学 核医学 内科学 深度学习 人工智能 狭窄 计算机科学
作者
Maike Theis,Wolfgang Block,Julian A. Luetkens,Ulrike Attenberger,Sebastian Nowak,Alois M. Sprinkart
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:168: 111150-111150
标识
DOI:10.1016/j.ejrad.2023.111150
摘要

To investigate survival prediction in patients undergoing transcatheter aortic valve replacement (TAVR) using deep learning (DL) methods applied directly to pre-interventional CT images and to compare performance with survival models based on scalar markers of body composition.This retrospective single-center study included 760 patients undergoing TAVR (mean age 81 ± 6 years; 389 female). As a baseline, a Cox proportional hazards model (CPHM) was trained to predict survival on sex, age, and the CT body composition markers fatty muscle fraction (FMF), skeletal muscle radiodensity (SMRD), and skeletal muscle area (SMA) derived from paraspinal muscle segmentation of a single slice at L3/L4 level. The convolutional neural network (CNN) encoder of the DL model for survival prediction was pre-trained in an autoencoder setting with and without a focus on paraspinal muscles. Finally, a combination of DL and CPHM was evaluated. Performance was assessed by C-index and area under the receiver operating curve (AUC) for 1-year and 2-year survival. All methods were trained with five-fold cross-validation and were evaluated on 152 hold-out test cases.The CNN for direct image-based survival prediction, pre-trained in a focussed autoencoder scenario, outperformed the baseline CPHM (CPHM: C-index = 0.608, 1Y-AUC = 0.606, 2Y-AUC = 0.594 vs. DL: C-index = 0.645, 1Y-AUC = 0.687, 2Y-AUC = 0.692). Combining DL and CPHM led to further improvement (C-index = 0.668, 1Y-AUC = 0.713, 2Y-AUC = 0.696).Direct DL-based survival prediction shows potential to improve image feature extraction compared to segmentation-based scalar markers of body composition for risk assessment in TAVR patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助木木采纳,获得10
刚刚
1秒前
zzf发布了新的文献求助10
1秒前
nerchywi完成签到,获得积分20
1秒前
2秒前
李心雨完成签到,获得积分10
2秒前
情怀应助ww采纳,获得10
3秒前
seven发布了新的文献求助10
3秒前
3秒前
3秒前
nerchywi发布了新的文献求助10
4秒前
lh0907发布了新的文献求助10
4秒前
FashionBoy应助草莓熊采纳,获得10
4秒前
5秒前
5秒前
遇上就这样吧应助彭绿柳采纳,获得30
5秒前
嗯嗯嗯给嗯嗯嗯的求助进行了留言
6秒前
刘思琪发布了新的文献求助10
6秒前
slow完成签到,获得积分10
7秒前
7秒前
科研通AI5应助不哭死神采纳,获得10
7秒前
Cissie应助鸡蛋采纳,获得10
7秒前
hdnej发布了新的文献求助10
7秒前
gsdrv完成签到,获得积分10
7秒前
8秒前
8秒前
Lucia发布了新的文献求助10
8秒前
9秒前
赘婿应助许丛郁采纳,获得10
9秒前
危机的蜜蜂完成签到,获得积分10
9秒前
9秒前
隐形曼青应助lh0907采纳,获得10
9秒前
不安青牛应助123采纳,获得20
9秒前
傲天完成签到,获得积分10
9秒前
9秒前
lishui完成签到,获得积分10
10秒前
鱼尾迟迟发布了新的文献求助10
10秒前
10秒前
岩崖应助雪白的迎波采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Diagnostic et prise en charge du prurit associé à la maladie rénale chronique chez les patients hémodialysés 1000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559223
求助须知:如何正确求助?哪些是违规求助? 3985809
关于积分的说明 12340549
捐赠科研通 3656376
什么是DOI,文献DOI怎么找? 2014374
邀请新用户注册赠送积分活动 1049168
科研通“疑难数据库(出版商)”最低求助积分说明 937521