Direct deep learning-based survival prediction from pre-interventional CT prior to transcatheter aortic valve replacement

医学 比例危险模型 生存分析 自编码 阀门更换 心脏病学 核医学 内科学 深度学习 人工智能 狭窄 计算机科学
作者
Maike Theis,Wolfgang Block,Julian A. Luetkens,Ulrike Attenberger,Sebastian Nowak,Alois M. Sprinkart
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:168: 111150-111150
标识
DOI:10.1016/j.ejrad.2023.111150
摘要

To investigate survival prediction in patients undergoing transcatheter aortic valve replacement (TAVR) using deep learning (DL) methods applied directly to pre-interventional CT images and to compare performance with survival models based on scalar markers of body composition.This retrospective single-center study included 760 patients undergoing TAVR (mean age 81 ± 6 years; 389 female). As a baseline, a Cox proportional hazards model (CPHM) was trained to predict survival on sex, age, and the CT body composition markers fatty muscle fraction (FMF), skeletal muscle radiodensity (SMRD), and skeletal muscle area (SMA) derived from paraspinal muscle segmentation of a single slice at L3/L4 level. The convolutional neural network (CNN) encoder of the DL model for survival prediction was pre-trained in an autoencoder setting with and without a focus on paraspinal muscles. Finally, a combination of DL and CPHM was evaluated. Performance was assessed by C-index and area under the receiver operating curve (AUC) for 1-year and 2-year survival. All methods were trained with five-fold cross-validation and were evaluated on 152 hold-out test cases.The CNN for direct image-based survival prediction, pre-trained in a focussed autoencoder scenario, outperformed the baseline CPHM (CPHM: C-index = 0.608, 1Y-AUC = 0.606, 2Y-AUC = 0.594 vs. DL: C-index = 0.645, 1Y-AUC = 0.687, 2Y-AUC = 0.692). Combining DL and CPHM led to further improvement (C-index = 0.668, 1Y-AUC = 0.713, 2Y-AUC = 0.696).Direct DL-based survival prediction shows potential to improve image feature extraction compared to segmentation-based scalar markers of body composition for risk assessment in TAVR patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
婷咋完成签到,获得积分20
刚刚
brodie完成签到,获得积分10
1秒前
彪壮的灭男完成签到,获得积分10
1秒前
1秒前
废废言完成签到,获得积分10
1秒前
jiyuan完成签到,获得积分10
2秒前
3秒前
qwe123完成签到,获得积分10
4秒前
么么蛋发布了新的文献求助10
5秒前
慕容松发布了新的文献求助10
5秒前
小城故事发布了新的文献求助10
5秒前
5秒前
斯文奇迹完成签到,获得积分10
5秒前
zc98完成签到,获得积分10
5秒前
TranYan完成签到,获得积分10
6秒前
笨笨凡松完成签到,获得积分10
7秒前
婷咋发布了新的文献求助10
8秒前
西瓜完成签到,获得积分10
8秒前
秋枫忆完成签到,获得积分10
8秒前
一切都会好起来的完成签到,获得积分10
8秒前
Singularity应助大力怀亦采纳,获得10
9秒前
万能图书馆应助大力怀亦采纳,获得10
9秒前
zc98发布了新的文献求助10
9秒前
wualexandra完成签到,获得积分10
9秒前
小雪完成签到,获得积分10
10秒前
Lucas应助Starry采纳,获得10
10秒前
10秒前
直率的宛海完成签到,获得积分10
10秒前
Samuel完成签到,获得积分10
11秒前
lirui_study完成签到,获得积分10
11秒前
11秒前
充电宝应助么么蛋采纳,获得10
12秒前
景行行止完成签到,获得积分10
12秒前
良辰应助我不221采纳,获得10
12秒前
逢强必赢完成签到,获得积分10
14秒前
时光完成签到,获得积分10
14秒前
兰彻完成签到,获得积分10
14秒前
倚栏听风完成签到,获得积分10
14秒前
merry6669完成签到 ,获得积分10
14秒前
guozi完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950051
求助须知:如何正确求助?哪些是违规求助? 3495384
关于积分的说明 11076831
捐赠科研通 3225937
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867640
科研通“疑难数据库(出版商)”最低求助积分说明 800855