Achieving wind power and photovoltaic power prediction: An intelligent prediction system based on a deep learning approach

粒子群优化 光伏系统 风力发电 计算机科学 电力系统 水准点(测量) 人工智能 工程类 功率(物理) 算法 物理 大地测量学 量子力学 地理 电气工程
作者
Yagang Zhang,Zhiya Pan,Hui Wang,Jingchao Wang,Zheng Zhao,Fei Wang
出处
期刊:Energy [Elsevier BV]
卷期号:283: 129005-129005 被引量:44
标识
DOI:10.1016/j.energy.2023.129005
摘要

Accurately predicting wind and photovoltaic power is one of the keys to improving the economy of wind-solar complementary power generation system, reducing scheduling costs and no-load losses, and ensuring grid stability. However, the natural properties of energy result in complex fluctuations in their corresponding power sequences, making accurate predictions difficult. Therefore, this paper proposes an intelligent prediction system that combines decomposition algorithms and deep learning for ultra-short-term prediction of wind and photovoltaic power. First, an improved decomposition algorithm is proposed, based on fuzzy entropy's property that its value increases with the increase of sequence uncertainty, particle swarm optimization (PSO) is used to search for the optimal parameter combinations of variational modal decomposition (VMD), so that it can automatically adjust the parameters for energy data with different characteristics to reduce the human error. Then, a convolutional neural network (CNN) architecture that balances operational efficiency and prediction performance is constructed, and the hyperparameters of the CNN are optimized using the wild horse optimization algorithm (WHO) to improve the stability and accuracy of the prediction model. In this paper, real data from wind power plants and photovoltaic power plants in China are used as experimental objects, and experiments are carried out in three aspects, namely, benchmark model selection, decomposition algorithm comparison and combined model comparison. The results show that selecting CNN as the benchmark model is a good choice; the improved VMD has better decomposition performance than other state-of-the-art decomposition algorithms. The system proposed in this paper is highly generalizable and adaptive, and its prediction performance and accuracy greatly outperform that of other comparative models, with prediction accuracies improved by 72% and 79%, respectively, compared to a single CNN model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
冰雪物语发布了新的文献求助10
1秒前
灵巧小鸽子完成签到,获得积分10
2秒前
黑暗之神完成签到,获得积分10
3秒前
4秒前
飞雪完成签到,获得积分10
4秒前
荷月初六发布了新的文献求助10
6秒前
JamesPei应助WD采纳,获得10
7秒前
李健的粉丝团团长应助赢赢采纳,获得100
7秒前
苏远山爱吃西红柿完成签到,获得积分10
8秒前
正义狗狗侠完成签到,获得积分10
9秒前
Zzoe_S完成签到,获得积分10
10秒前
xhm完成签到,获得积分10
13秒前
大个应助123采纳,获得10
14秒前
慕青应助全能发文章采纳,获得10
15秒前
18秒前
19秒前
ussiMi发布了新的文献求助10
21秒前
研友_VZG7GZ应助小龙采纳,获得10
21秒前
小冰完成签到,获得积分10
22秒前
害羞外套发布了新的文献求助10
23秒前
23秒前
徐徐完成签到,获得积分10
23秒前
24秒前
27秒前
1111发布了新的文献求助10
27秒前
28秒前
CAOHOU应助文竹采纳,获得10
30秒前
31秒前
丘比特应助冷酷夏烟采纳,获得10
31秒前
32秒前
大个应助小路采纳,获得10
32秒前
34秒前
35秒前
半凡发布了新的文献求助10
35秒前
12345完成签到,获得积分10
37秒前
量子星尘发布了新的文献求助10
37秒前
徐徐发布了新的文献求助10
38秒前
123发布了新的文献求助10
39秒前
大桶水果茶完成签到,获得积分10
42秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979719
求助须知:如何正确求助?哪些是违规求助? 3523760
关于积分的说明 11218505
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800507
邀请新用户注册赠送积分活动 879117
科研通“疑难数据库(出版商)”最低求助积分说明 807182