Achieving wind power and photovoltaic power prediction: An intelligent prediction system based on a deep learning approach

粒子群优化 光伏系统 风力发电 计算机科学 电力系统 水准点(测量) 人工智能 工程类 功率(物理) 算法 大地测量学 量子力学 电气工程 物理 地理
作者
Yagang Zhang,Zhiya Pan,Hui Wang,Jingchao Wang,Zheng Zhao,Fei Wang
出处
期刊:Energy [Elsevier]
卷期号:283: 129005-129005 被引量:11
标识
DOI:10.1016/j.energy.2023.129005
摘要

Accurately predicting wind and photovoltaic power is one of the keys to improving the economy of wind-solar complementary power generation system, reducing scheduling costs and no-load losses, and ensuring grid stability. However, the natural properties of energy result in complex fluctuations in their corresponding power sequences, making accurate predictions difficult. Therefore, this paper proposes an intelligent prediction system that combines decomposition algorithms and deep learning for ultra-short-term prediction of wind and photovoltaic power. First, an improved decomposition algorithm is proposed, based on fuzzy entropy's property that its value increases with the increase of sequence uncertainty, particle swarm optimization (PSO) is used to search for the optimal parameter combinations of variational modal decomposition (VMD), so that it can automatically adjust the parameters for energy data with different characteristics to reduce the human error. Then, a convolutional neural network (CNN) architecture that balances operational efficiency and prediction performance is constructed, and the hyperparameters of the CNN are optimized using the wild horse optimization algorithm (WHO) to improve the stability and accuracy of the prediction model. In this paper, real data from wind power plants and photovoltaic power plants in China are used as experimental objects, and experiments are carried out in three aspects, namely, benchmark model selection, decomposition algorithm comparison and combined model comparison. The results show that selecting CNN as the benchmark model is a good choice; the improved VMD has better decomposition performance than other state-of-the-art decomposition algorithms. The system proposed in this paper is highly generalizable and adaptive, and its prediction performance and accuracy greatly outperform that of other comparative models, with prediction accuracies improved by 72% and 79%, respectively, compared to a single CNN model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱吃泡芙发布了新的文献求助10
刚刚
OVERSEER发布了新的文献求助10
刚刚
在水一方应助小虫子采纳,获得10
1秒前
1秒前
隐形曼青应助实验做了吗采纳,获得10
1秒前
柚子完成签到 ,获得积分10
1秒前
dd发布了新的文献求助10
2秒前
XXDD小吴完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
充电宝应助微笑的涛采纳,获得10
3秒前
3秒前
账户已注销应助锅包肉采纳,获得30
3秒前
4秒前
科研通AI2S应助哇了哇采纳,获得10
4秒前
klklk发布了新的文献求助10
4秒前
SC发布了新的文献求助10
4秒前
IAMXC发布了新的文献求助10
4秒前
榕俊发布了新的文献求助20
5秒前
脑洞疼应助ohh采纳,获得10
5秒前
第一张发布了新的文献求助10
6秒前
森森完成签到,获得积分10
6秒前
fanmo完成签到 ,获得积分10
6秒前
OhoOu完成签到 ,获得积分10
6秒前
前路完成签到,获得积分10
7秒前
7秒前
ly完成签到,获得积分10
7秒前
李爱国应助雨渐渐采纳,获得10
8秒前
ssk发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
8秒前
97发布了新的文献求助10
10秒前
可爱的函函应助Doyle采纳,获得10
10秒前
10秒前
jenee完成签到,获得积分10
10秒前
希望天下0贩的0应助sc采纳,获得10
11秒前
11秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144780
求助须知:如何正确求助?哪些是违规求助? 2796171
关于积分的说明 7818496
捐赠科研通 2452363
什么是DOI,文献DOI怎么找? 1304950
科研通“疑难数据库(出版商)”最低求助积分说明 627377
版权声明 601449