Achieving wind power and photovoltaic power prediction: An intelligent prediction system based on a deep learning approach

粒子群优化 光伏系统 风力发电 计算机科学 电力系统 水准点(测量) 人工智能 工程类 功率(物理) 算法 大地测量学 量子力学 电气工程 物理 地理
作者
Yagang Zhang,Zhiya Pan,Hui Wang,Jingchao Wang,Zheng Zhao,Fei Wang
出处
期刊:Energy [Elsevier]
卷期号:283: 129005-129005 被引量:50
标识
DOI:10.1016/j.energy.2023.129005
摘要

Accurately predicting wind and photovoltaic power is one of the keys to improving the economy of wind-solar complementary power generation system, reducing scheduling costs and no-load losses, and ensuring grid stability. However, the natural properties of energy result in complex fluctuations in their corresponding power sequences, making accurate predictions difficult. Therefore, this paper proposes an intelligent prediction system that combines decomposition algorithms and deep learning for ultra-short-term prediction of wind and photovoltaic power. First, an improved decomposition algorithm is proposed, based on fuzzy entropy's property that its value increases with the increase of sequence uncertainty, particle swarm optimization (PSO) is used to search for the optimal parameter combinations of variational modal decomposition (VMD), so that it can automatically adjust the parameters for energy data with different characteristics to reduce the human error. Then, a convolutional neural network (CNN) architecture that balances operational efficiency and prediction performance is constructed, and the hyperparameters of the CNN are optimized using the wild horse optimization algorithm (WHO) to improve the stability and accuracy of the prediction model. In this paper, real data from wind power plants and photovoltaic power plants in China are used as experimental objects, and experiments are carried out in three aspects, namely, benchmark model selection, decomposition algorithm comparison and combined model comparison. The results show that selecting CNN as the benchmark model is a good choice; the improved VMD has better decomposition performance than other state-of-the-art decomposition algorithms. The system proposed in this paper is highly generalizable and adaptive, and its prediction performance and accuracy greatly outperform that of other comparative models, with prediction accuracies improved by 72% and 79%, respectively, compared to a single CNN model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wjq发布了新的文献求助10
1秒前
田様应助生而狂野天逸采纳,获得10
1秒前
田様应助ritakashi采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
大气靳发布了新的文献求助10
2秒前
2秒前
如意蓉发布了新的文献求助10
2秒前
Neol发布了新的文献求助30
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
所所应助小刺猬采纳,获得30
5秒前
英吉利25发布了新的文献求助30
5秒前
Aria完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
ELEGENCE发布了新的文献求助10
8秒前
文文发布了新的文献求助10
8秒前
如意蓉完成签到,获得积分10
8秒前
123完成签到,获得积分10
9秒前
王磊发布了新的文献求助10
9秒前
alin18发布了新的文献求助10
9秒前
9秒前
gongcheng发布了新的文献求助10
10秒前
11秒前
深情安青应助blusky采纳,获得10
11秒前
mm完成签到,获得积分10
11秒前
qzp完成签到 ,获得积分10
11秒前
wjq完成签到,获得积分10
12秒前
12秒前
NexusExplorer应助faqiudexiaogou2采纳,获得10
12秒前
在水一方应助如意蓉采纳,获得10
13秒前
常艳艳发布了新的文献求助10
13秒前
故意的怀曼完成签到,获得积分10
14秒前
cruise发布了新的文献求助10
15秒前
安静向珊应助zhuzhu采纳,获得10
15秒前
瑾瑜完成签到 ,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425