计算机科学
人工智能
机器学习
学习规律
感觉系统
人工神经网络
神经科学
心理学
作者
G. William Chapman,Michael E. Hasselmo
标识
DOI:10.1016/j.nlm.2023.107826
摘要
Humans and other animals are able to quickly generalize latent dynamics of spatiotemporal sequences, often from a minimal number of previous experiences. Additionally, internal representations of external stimuli must remain stable, even in the presence of sensory noise, in order to be useful for informing behavior. In contrast, typical machine learning approaches require many thousands of samples, and generalize poorly to unexperienced examples, or fail completely to predict at long timescales. Here, we propose a novel neural network module which incorporates hierarchy and recurrent feedback terms, constituting a simplified model of neocortical microcircuits. This microcircuit predicts spatiotemporal trajectories at the input layer using a temporal error minimization algorithm. We show that this module is able to predict with higher accuracy into the future compared to traditional models. Investigating this model we find that successive predictive models learn representations which are increasingly removed from the raw sensory space, namely as successive temporal derivatives of the positional information. Next, we introduce a spiking neural network model which implements the rate-model through the use of a recently proposed biological learning rule utilizing dual-compartment neurons. We show that this network performs well on the same tasks as the mean-field models, by developing intrinsic dynamics that follow the dynamics of the external stimulus, while coordinating transmission of higher-order dynamics. Taken as a whole, these findings suggest that hierarchical temporal abstraction of sequences, rather than feed-forward reconstruction, may be responsible for the ability of neural systems to quickly adapt to novel situations.
科研通智能强力驱动
Strongly Powered by AbleSci AI