清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Feature-based magnetotelluric inversion by variational autoencoder using a subdomain encoding scheme

反演(地质) 先验与后验 算法 计算机科学 大地电磁法 自编码 像素 模式识别(心理学) 人工智能 人工神经网络 地质学 电阻率和电导率 构造盆地 认识论 电气工程 工程类 哲学 古生物学
作者
Hongyu Zhou,Rui Guo,Maokun Li,Fan Yang,Shenheng Xu,Aria Abubakar
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (1): WA67-WA83 被引量:2
标识
DOI:10.1190/geo2022-0774.1
摘要

Magnetotelluric (MT) data inversion aims to reconstruct a subsurface resistivity model that minimizes the discrepancy between inverted and measured electromagnetic data. Conventional pixel-based minimum-structure inversion often yields a smoothed-out reconstruction with a relatively low resolution. A priori geophysical knowledge can be embedded into inversion and improve the reconstruction resolution through proper reparameterization. However, existing reparameterization approaches, such as model-based and parametric transform-based inversion, have limited ability to incorporate various a priori information. The effectiveness of existing deep generative model-based inversion algorithms is still debatable when applied to scenarios with complex backgrounds. We develop a feature-based MT data inversion method based on a variational autoencoder (VAE) with a subdomain encoding scheme. Instead of encoding the entire domain of an investigation, we adopt a 1D subdomain encoding scheme to encode the 1D resistivity-depth models using a single VAE. The latent variables for the 2D model are a combination of the latent variables for 1D models, and the encoded region of interest (ROI) can be flexibly determined. The latent variables of ROI and the pixels outside the ROI are simultaneously inverted using the gradient-descent method. Our 1D subdomain encoding scheme reduces the complexity and diversity of the data set, and it can flexibly embed a priori knowledge with various uncertainties. Synthetic data inversion and inversion of the Southern African Magnetotelluric Experiment field data validate our method’s ability to effectively improve inversion accuracy and resolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jessica应助精明代灵采纳,获得10
3秒前
大个应助安静的小蘑菇采纳,获得30
3秒前
上官若男应助巫马百招采纳,获得10
5秒前
量子星尘发布了新的文献求助10
19秒前
27秒前
紫熊发布了新的文献求助10
32秒前
巫马百招发布了新的文献求助10
32秒前
巫马百招完成签到,获得积分10
38秒前
1分钟前
1分钟前
1分钟前
1分钟前
小马甲应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
紫熊完成签到,获得积分10
2分钟前
奋斗的小研完成签到,获得积分10
2分钟前
2分钟前
锦城纯契完成签到 ,获得积分10
2分钟前
常有李完成签到,获得积分10
4分钟前
Azure完成签到 ,获得积分10
4分钟前
灿烂而孤独的八戒完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
carolsoongmm完成签到,获得积分10
6分钟前
hu完成签到,获得积分20
6分钟前
6分钟前
精明代灵完成签到,获得积分10
6分钟前
精明代灵发布了新的文献求助10
6分钟前
hu发布了新的文献求助10
6分钟前
6分钟前
gwbk完成签到,获得积分10
6分钟前
7分钟前
量子星尘发布了新的文献求助10
7分钟前
kklkimo完成签到,获得积分10
7分钟前
慕青应助erjfuhe采纳,获得10
7分钟前
月军完成签到 ,获得积分10
8分钟前
量子星尘发布了新的文献求助10
8分钟前
Wenfeifei发布了新的文献求助50
8分钟前
无私雅柏完成签到 ,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664524
求助须知:如何正确求助?哪些是违规求助? 4864433
关于积分的说明 15107930
捐赠科研通 4823164
什么是DOI,文献DOI怎么找? 2582020
邀请新用户注册赠送积分活动 1536109
关于科研通互助平台的介绍 1494538