Feature-based magnetotelluric inversion by variational autoencoder using a subdomain encoding scheme

反演(地质) 先验与后验 算法 计算机科学 大地电磁法 自编码 像素 模式识别(心理学) 人工智能 人工神经网络 地质学 电阻率和电导率 构造盆地 认识论 电气工程 工程类 哲学 古生物学
作者
Hongyu Zhou,Rui Guo,Maokun Li,Fan Yang,Shenheng Xu,Aria Abubakar
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (1): WA67-WA83 被引量:2
标识
DOI:10.1190/geo2022-0774.1
摘要

Magnetotelluric (MT) data inversion aims to reconstruct a subsurface resistivity model that minimizes the discrepancy between inverted and measured electromagnetic data. Conventional pixel-based minimum-structure inversion often yields a smoothed-out reconstruction with a relatively low resolution. A priori geophysical knowledge can be embedded into inversion and improve the reconstruction resolution through proper reparameterization. However, existing reparameterization approaches, such as model-based and parametric transform-based inversion, have limited ability to incorporate various a priori information. The effectiveness of existing deep generative model-based inversion algorithms is still debatable when applied to scenarios with complex backgrounds. We develop a feature-based MT data inversion method based on a variational autoencoder (VAE) with a subdomain encoding scheme. Instead of encoding the entire domain of an investigation, we adopt a 1D subdomain encoding scheme to encode the 1D resistivity-depth models using a single VAE. The latent variables for the 2D model are a combination of the latent variables for 1D models, and the encoded region of interest (ROI) can be flexibly determined. The latent variables of ROI and the pixels outside the ROI are simultaneously inverted using the gradient-descent method. Our 1D subdomain encoding scheme reduces the complexity and diversity of the data set, and it can flexibly embed a priori knowledge with various uncertainties. Synthetic data inversion and inversion of the Southern African Magnetotelluric Experiment field data validate our method’s ability to effectively improve inversion accuracy and resolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
所所应助能干储采纳,获得10
1秒前
1秒前
李健的小迷弟应助UTAU采纳,获得10
2秒前
12umi发布了新的文献求助10
2秒前
Zx_1993应助萄哥布鸽采纳,获得20
3秒前
hanyue发布了新的文献求助10
4秒前
yeah完成签到,获得积分10
4秒前
zhou完成签到 ,获得积分10
5秒前
5秒前
5秒前
周爱李完成签到,获得积分10
6秒前
立秋日完成签到,获得积分10
8秒前
如果发布了新的文献求助10
9秒前
xiying发布了新的文献求助10
9秒前
贪玩半仙完成签到 ,获得积分10
9秒前
9秒前
Akim应助RC_Wang采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
奋斗绿蕊发布了新的文献求助10
10秒前
10秒前
11秒前
浮生若梦应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
JoeJ应助科研通管家采纳,获得10
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
惊蛰完成签到,获得积分10
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
12秒前
浮游应助科研通管家采纳,获得10
12秒前
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
wanci应助科研通管家采纳,获得10
12秒前
无花果应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
Jasper应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262524
求助须知:如何正确求助?哪些是违规求助? 4423472
关于积分的说明 13769822
捐赠科研通 4298194
什么是DOI,文献DOI怎么找? 2358305
邀请新用户注册赠送积分活动 1354627
关于科研通互助平台的介绍 1315823