亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Feature-based magnetotelluric inversion by variational autoencoder using a subdomain encoding scheme

反演(地质) 先验与后验 算法 计算机科学 大地电磁法 自编码 像素 模式识别(心理学) 人工智能 人工神经网络 地质学 电阻率和电导率 构造盆地 认识论 电气工程 工程类 哲学 古生物学
作者
Hongyu Zhou,Rui Guo,Maokun Li,Fan Yang,Shenheng Xu,Aria Abubakar
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (1): WA67-WA83 被引量:2
标识
DOI:10.1190/geo2022-0774.1
摘要

Magnetotelluric (MT) data inversion aims to reconstruct a subsurface resistivity model that minimizes the discrepancy between inverted and measured electromagnetic data. Conventional pixel-based minimum-structure inversion often yields a smoothed-out reconstruction with a relatively low resolution. A priori geophysical knowledge can be embedded into inversion and improve the reconstruction resolution through proper reparameterization. However, existing reparameterization approaches, such as model-based and parametric transform-based inversion, have limited ability to incorporate various a priori information. The effectiveness of existing deep generative model-based inversion algorithms is still debatable when applied to scenarios with complex backgrounds. We develop a feature-based MT data inversion method based on a variational autoencoder (VAE) with a subdomain encoding scheme. Instead of encoding the entire domain of an investigation, we adopt a 1D subdomain encoding scheme to encode the 1D resistivity-depth models using a single VAE. The latent variables for the 2D model are a combination of the latent variables for 1D models, and the encoded region of interest (ROI) can be flexibly determined. The latent variables of ROI and the pixels outside the ROI are simultaneously inverted using the gradient-descent method. Our 1D subdomain encoding scheme reduces the complexity and diversity of the data set, and it can flexibly embed a priori knowledge with various uncertainties. Synthetic data inversion and inversion of the Southern African Magnetotelluric Experiment field data validate our method’s ability to effectively improve inversion accuracy and resolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助pups采纳,获得10
9秒前
量子星尘发布了新的文献求助10
14秒前
yb完成签到,获得积分10
22秒前
甜青提完成签到,获得积分10
28秒前
weibo完成签到,获得积分10
36秒前
38秒前
wang发布了新的文献求助10
45秒前
47秒前
风中的雪发布了新的文献求助10
50秒前
cxm发布了新的文献求助10
53秒前
风中的雪完成签到,获得积分10
58秒前
凡人完成签到 ,获得积分10
59秒前
1分钟前
will完成签到,获得积分10
1分钟前
星辰大海应助沫雨采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
乐乐应助andrele采纳,获得10
1分钟前
科研通AI6应助zznzn采纳,获得10
2分钟前
2分钟前
2分钟前
沫雨发布了新的文献求助10
2分钟前
史前巨怪完成签到,获得积分0
2分钟前
2分钟前
落沧发布了新的文献求助10
2分钟前
晚街听风完成签到 ,获得积分10
2分钟前
zho发布了新的文献求助10
2分钟前
黄青青完成签到,获得积分10
3分钟前
3分钟前
Ava应助sy采纳,获得10
3分钟前
11111发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
sy发布了新的文献求助10
3分钟前
3分钟前
3分钟前
搜集达人应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671189
求助须知:如何正确求助?哪些是违规求助? 4911434
关于积分的说明 15134190
捐赠科研通 4829942
什么是DOI,文献DOI怎么找? 2586543
邀请新用户注册赠送积分活动 1540204
关于科研通互助平台的介绍 1498392