Spectral-Spatial Distribution Consistent Network Based on Meta-Learning for Cross-Domain Hyperspectral Image Classification

高光谱成像 计算机科学 模式识别(心理学) 特征提取 人工智能 判别式 特征(语言学) 卷积神经网络 奇异值分解 空间分析 数学 语言学 统计 哲学
作者
Xiangrong Zhang,Qi Zhen,Zhenyu Li,Xiao Han,Puhua Chen,Xu Tang,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:4
标识
DOI:10.1109/tgrs.2023.3303319
摘要

Cross-domain networks can solve the problem of insufficient labeled samples, especially for hyperspectral images (HSIs) where obtaining labeled samples is time-consuming and laborious. Most of the current methods rely on the spatial information to achieve domain alignment, without considering the rich spectral information of HSIs. Furthermore, the methods based on convolutional neural network (CNN) cannot get the spatial information of irregular image regions, resulting in poor classification results of object edges. Therefore, we design a spectral-spatial distribution consistent network (SSDC) based on meta-learning. Firstly, to improve the feature extraction ability of the cross-domain classification model, we introduce a feature pre-extraction module, which uses the spectral attention mechanism and the alternating meta-learning method to obtain the general features of the source domain and the discriminative features of the target domain, so as to obtain the spectral weight matrix for subsequent processing. Secondly, we propose a spectral consistent module based on singular value decomposition, which increases the difference between different classes of features by penalizing the singular values of the feature matrix to achieve data distribution alignment in the spectral dimension. Finally, aiming at the low classification accuracy of irregular image regions, we propose a spatial consistent module to obtain non-local spatial topological information through stacked cross modules and graph sample and aggregate networks, which can reduce domain shift. The experiments of SSDC on four classical HSI datasets show that the proposed method can obtain competitive results with other methods based on CNN and cross-domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
于夜柳发布了新的文献求助10
刚刚
蔡徐坤发布了新的文献求助10
刚刚
w420860432发布了新的文献求助10
1秒前
3秒前
黎长江完成签到,获得积分10
3秒前
小春卷完成签到,获得积分10
3秒前
化工波比完成签到,获得积分10
5秒前
w420860432完成签到,获得积分20
6秒前
6秒前
彭于晏应助大可奇采纳,获得10
6秒前
黎长江发布了新的文献求助10
7秒前
炊饼完成签到,获得积分20
7秒前
昊昊完成签到,获得积分10
8秒前
李爱国应助务实小鸽子采纳,获得10
10秒前
Lemon完成签到,获得积分20
11秒前
张圆梦发布了新的文献求助10
11秒前
coffee333发布了新的文献求助10
12秒前
huo发布了新的文献求助10
12秒前
12秒前
拼搏妙竹发布了新的文献求助10
14秒前
酷炫笑翠完成签到,获得积分20
14秒前
科研通AI2S应助鱼鳞飞飞采纳,获得10
14秒前
16秒前
暖暖完成签到,获得积分20
17秒前
大可奇完成签到,获得积分10
17秒前
希望天下0贩的0应助dyfdyf采纳,获得10
17秒前
peng完成签到,获得积分10
17秒前
把书读烂发布了新的文献求助10
17秒前
慕青应助w420860432采纳,获得10
18秒前
coffee333完成签到,获得积分10
18秒前
杜康完成签到,获得积分10
19秒前
19秒前
大可奇发布了新的文献求助10
20秒前
领导范儿应助sunny采纳,获得10
21秒前
科研通AI2S应助鱼鳞飞飞采纳,获得10
21秒前
Jun应助梅子采纳,获得10
22秒前
浩瀚完成签到,获得积分10
22秒前
22秒前
23秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161216
求助须知:如何正确求助?哪些是违规求助? 2812648
关于积分的说明 7895876
捐赠科研通 2471484
什么是DOI,文献DOI怎么找? 1316042
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112