Spectral-Spatial Distribution Consistent Network Based on Meta-Learning for Cross-Domain Hyperspectral Image Classification

高光谱成像 计算机科学 模式识别(心理学) 特征提取 人工智能 判别式 特征(语言学) 卷积神经网络 奇异值分解 空间分析 数学 哲学 统计 语言学
作者
Xiangrong Zhang,Qi Zhen,Zhenyu Li,Xiao Han,Puhua Chen,Xu Tang,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:4
标识
DOI:10.1109/tgrs.2023.3303319
摘要

Cross-domain networks can solve the problem of insufficient labeled samples, especially for hyperspectral images (HSIs) where obtaining labeled samples is time-consuming and laborious. Most of the current methods rely on the spatial information to achieve domain alignment, without considering the rich spectral information of HSIs. Furthermore, the methods based on convolutional neural network (CNN) cannot get the spatial information of irregular image regions, resulting in poor classification results of object edges. Therefore, we design a spectral-spatial distribution consistent network (SSDC) based on meta-learning. Firstly, to improve the feature extraction ability of the cross-domain classification model, we introduce a feature pre-extraction module, which uses the spectral attention mechanism and the alternating meta-learning method to obtain the general features of the source domain and the discriminative features of the target domain, so as to obtain the spectral weight matrix for subsequent processing. Secondly, we propose a spectral consistent module based on singular value decomposition, which increases the difference between different classes of features by penalizing the singular values of the feature matrix to achieve data distribution alignment in the spectral dimension. Finally, aiming at the low classification accuracy of irregular image regions, we propose a spatial consistent module to obtain non-local spatial topological information through stacked cross modules and graph sample and aggregate networks, which can reduce domain shift. The experiments of SSDC on four classical HSI datasets show that the proposed method can obtain competitive results with other methods based on CNN and cross-domain.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙子完成签到,获得积分10
刚刚
jenningseastera完成签到,获得积分0
1秒前
dwct发布了新的文献求助10
1秒前
1秒前
1秒前
神鸢发布了新的文献求助10
1秒前
晓世完成签到,获得积分10
2秒前
柔弱静柏完成签到,获得积分10
2秒前
沉静的迎荷完成签到,获得积分10
2秒前
研友_8yX0xZ完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
stg完成签到,获得积分10
4秒前
伙腿长发布了新的文献求助10
4秒前
斯文败类应助关于我采纳,获得20
4秒前
Lolo发布了新的文献求助50
5秒前
5秒前
Ava应助xiaoju采纳,获得10
5秒前
杨半鬼发布了新的文献求助30
5秒前
6秒前
积极的雁风完成签到,获得积分10
6秒前
曹孟德完成签到,获得积分10
7秒前
糖哦完成签到,获得积分10
7秒前
嘉平三十发布了新的文献求助10
7秒前
了了完成签到 ,获得积分10
7秒前
如意雅山完成签到,获得积分10
8秒前
kings完成签到,获得积分10
8秒前
orixero应助帕丁顿采纳,获得10
9秒前
雪落完成签到,获得积分10
9秒前
ruogu7完成签到,获得积分10
10秒前
我和狂三贴贴完成签到,获得积分10
10秒前
幽默的羞花完成签到,获得积分10
10秒前
鹿鹿完成签到,获得积分10
10秒前
无奈项链发布了新的文献求助10
10秒前
10秒前
10秒前
大盘菜应助工作还是工作采纳,获得10
10秒前
30040完成签到,获得积分10
10秒前
nnn完成签到,获得积分10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977