Spectral-Spatial Distribution Consistent Network Based on Meta-Learning for Cross-Domain Hyperspectral Image Classification

高光谱成像 计算机科学 模式识别(心理学) 特征提取 人工智能 判别式 特征(语言学) 卷积神经网络 奇异值分解 空间分析 数学 哲学 统计 语言学
作者
Xiangrong Zhang,Qi Zhen,Zhenyu Li,Xiao Han,Puhua Chen,Xu Tang,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:4
标识
DOI:10.1109/tgrs.2023.3303319
摘要

Cross-domain networks can solve the problem of insufficient labeled samples, especially for hyperspectral images (HSIs) where obtaining labeled samples is time-consuming and laborious. Most of the current methods rely on the spatial information to achieve domain alignment, without considering the rich spectral information of HSIs. Furthermore, the methods based on convolutional neural network (CNN) cannot get the spatial information of irregular image regions, resulting in poor classification results of object edges. Therefore, we design a spectral-spatial distribution consistent network (SSDC) based on meta-learning. Firstly, to improve the feature extraction ability of the cross-domain classification model, we introduce a feature pre-extraction module, which uses the spectral attention mechanism and the alternating meta-learning method to obtain the general features of the source domain and the discriminative features of the target domain, so as to obtain the spectral weight matrix for subsequent processing. Secondly, we propose a spectral consistent module based on singular value decomposition, which increases the difference between different classes of features by penalizing the singular values of the feature matrix to achieve data distribution alignment in the spectral dimension. Finally, aiming at the low classification accuracy of irregular image regions, we propose a spatial consistent module to obtain non-local spatial topological information through stacked cross modules and graph sample and aggregate networks, which can reduce domain shift. The experiments of SSDC on four classical HSI datasets show that the proposed method can obtain competitive results with other methods based on CNN and cross-domain.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳的渊思完成签到 ,获得积分10
2秒前
4秒前
4秒前
英勇含烟完成签到,获得积分10
4秒前
yoyo完成签到 ,获得积分10
7秒前
回忆完成签到,获得积分10
10秒前
害怕的冰颜完成签到 ,获得积分10
11秒前
laber完成签到,获得积分0
11秒前
量子星尘发布了新的文献求助10
13秒前
回来完成签到,获得积分10
18秒前
MHB应助孙乐777采纳,获得10
18秒前
19秒前
20秒前
义气的水蓝完成签到 ,获得积分10
22秒前
轻松的万天完成签到 ,获得积分10
24秒前
巴达天使完成签到,获得积分10
24秒前
heisebeileimao应助阿拉采纳,获得50
24秒前
26秒前
ziyue发布了新的文献求助10
29秒前
沙特土财主完成签到 ,获得积分20
29秒前
孙乐777完成签到,获得积分10
30秒前
Sebastian完成签到,获得积分10
31秒前
王QQ完成签到 ,获得积分10
33秒前
震动的鹏飞完成签到 ,获得积分10
34秒前
ziyue完成签到,获得积分10
34秒前
浮游应助TianBa123采纳,获得10
35秒前
35秒前
李爱国应助Rico采纳,获得50
37秒前
Wang发布了新的文献求助10
38秒前
39秒前
39秒前
雷仔完成签到,获得积分10
41秒前
量子星尘发布了新的文献求助10
43秒前
浮游应助Wang采纳,获得10
44秒前
清欢完成签到 ,获得积分10
45秒前
夏虫完成签到,获得积分10
54秒前
红毛兔完成签到,获得积分10
54秒前
Andy完成签到,获得积分10
59秒前
量子星尘发布了新的文献求助10
59秒前
CC完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645089
求助须知:如何正确求助?哪些是违规求助? 4767716
关于积分的说明 15026372
捐赠科研通 4803503
什么是DOI,文献DOI怎么找? 2568340
邀请新用户注册赠送积分活动 1525697
关于科研通互助平台的介绍 1485301