Spectral-Spatial Distribution Consistent Network Based on Meta-Learning for Cross-Domain Hyperspectral Image Classification

高光谱成像 计算机科学 模式识别(心理学) 特征提取 人工智能 判别式 特征(语言学) 卷积神经网络 奇异值分解 空间分析 数学 哲学 统计 语言学
作者
Xiangrong Zhang,Qi Zhen,Zhenyu Li,Xiao Han,Puhua Chen,Xu Tang,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:4
标识
DOI:10.1109/tgrs.2023.3303319
摘要

Cross-domain networks can solve the problem of insufficient labeled samples, especially for hyperspectral images (HSIs) where obtaining labeled samples is time-consuming and laborious. Most of the current methods rely on the spatial information to achieve domain alignment, without considering the rich spectral information of HSIs. Furthermore, the methods based on convolutional neural network (CNN) cannot get the spatial information of irregular image regions, resulting in poor classification results of object edges. Therefore, we design a spectral-spatial distribution consistent network (SSDC) based on meta-learning. Firstly, to improve the feature extraction ability of the cross-domain classification model, we introduce a feature pre-extraction module, which uses the spectral attention mechanism and the alternating meta-learning method to obtain the general features of the source domain and the discriminative features of the target domain, so as to obtain the spectral weight matrix for subsequent processing. Secondly, we propose a spectral consistent module based on singular value decomposition, which increases the difference between different classes of features by penalizing the singular values of the feature matrix to achieve data distribution alignment in the spectral dimension. Finally, aiming at the low classification accuracy of irregular image regions, we propose a spatial consistent module to obtain non-local spatial topological information through stacked cross modules and graph sample and aggregate networks, which can reduce domain shift. The experiments of SSDC on four classical HSI datasets show that the proposed method can obtain competitive results with other methods based on CNN and cross-domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在下毛毛雨完成签到,获得积分10
刚刚
赘婿应助TJway采纳,获得10
刚刚
令狐擎宇完成签到,获得积分10
1秒前
Orange应助闪电侠采纳,获得10
1秒前
大气亦巧完成签到,获得积分10
2秒前
2秒前
生动孤丝发布了新的文献求助10
2秒前
yyyyy发布了新的文献求助10
3秒前
3秒前
RoyChen发布了新的文献求助10
3秒前
lc驳回了慕青应助
3秒前
FashionBoy应助西门庆采纳,获得10
4秒前
SHAO应助wuming7890采纳,获得10
4秒前
71完成签到,获得积分10
4秒前
弦断陌殇发布了新的文献求助30
4秒前
蚂蚁Y嘿完成签到,获得积分10
4秒前
xiaohu发布了新的文献求助10
4秒前
bkagyin应助忱氿采纳,获得10
5秒前
情怀应助缺粥采纳,获得10
5秒前
mader发布了新的文献求助10
5秒前
5秒前
俭朴的雁芙完成签到,获得积分10
6秒前
万能图书馆应助阿智采纳,获得10
6秒前
乐乐应助哈哈哈哈采纳,获得10
6秒前
慕青应助二十五采纳,获得10
6秒前
Cchu应助贺呵呵采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
liufang发布了新的文献求助10
8秒前
8秒前
SciGPT应助聪明仰采纳,获得10
8秒前
8秒前
Cyris完成签到,获得积分10
9秒前
9秒前
医学生xy完成签到,获得积分10
10秒前
小蘑菇应助弦断陌殇采纳,获得10
10秒前
等到雨停发布了新的文献求助10
11秒前
11秒前
Alibizia发布了新的文献求助10
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979196
求助须知:如何正确求助?哪些是违规求助? 3523110
关于积分的说明 11216298
捐赠科研通 3260559
什么是DOI,文献DOI怎么找? 1800098
邀请新用户注册赠送积分活动 878823
科研通“疑难数据库(出版商)”最低求助积分说明 807092