Spectral-Spatial Distribution Consistent Network Based on Meta-Learning for Cross-Domain Hyperspectral Image Classification

高光谱成像 计算机科学 模式识别(心理学) 特征提取 人工智能 判别式 特征(语言学) 卷积神经网络 奇异值分解 空间分析 数学 哲学 统计 语言学
作者
Xiangrong Zhang,Qi Zhen,Zhenyu Li,Xiao Han,Puhua Chen,Xu Tang,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:4
标识
DOI:10.1109/tgrs.2023.3303319
摘要

Cross-domain networks can solve the problem of insufficient labeled samples, especially for hyperspectral images (HSIs) where obtaining labeled samples is time-consuming and laborious. Most of the current methods rely on the spatial information to achieve domain alignment, without considering the rich spectral information of HSIs. Furthermore, the methods based on convolutional neural network (CNN) cannot get the spatial information of irregular image regions, resulting in poor classification results of object edges. Therefore, we design a spectral-spatial distribution consistent network (SSDC) based on meta-learning. Firstly, to improve the feature extraction ability of the cross-domain classification model, we introduce a feature pre-extraction module, which uses the spectral attention mechanism and the alternating meta-learning method to obtain the general features of the source domain and the discriminative features of the target domain, so as to obtain the spectral weight matrix for subsequent processing. Secondly, we propose a spectral consistent module based on singular value decomposition, which increases the difference between different classes of features by penalizing the singular values of the feature matrix to achieve data distribution alignment in the spectral dimension. Finally, aiming at the low classification accuracy of irregular image regions, we propose a spatial consistent module to obtain non-local spatial topological information through stacked cross modules and graph sample and aggregate networks, which can reduce domain shift. The experiments of SSDC on four classical HSI datasets show that the proposed method can obtain competitive results with other methods based on CNN and cross-domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助彭彭采纳,获得10
刚刚
卡卡完成签到 ,获得积分10
刚刚
科目三应助季夏采纳,获得10
1秒前
1秒前
今后应助激动的一手采纳,获得10
1秒前
许中原完成签到,获得积分10
1秒前
无限的幻灵完成签到,获得积分10
1秒前
2秒前
整齐路灯完成签到,获得积分10
2秒前
紧张的梦岚应助跳跃乘风采纳,获得20
2秒前
简单水杯完成签到 ,获得积分10
2秒前
大胆的尔岚完成签到,获得积分10
3秒前
3秒前
Sene完成签到,获得积分10
3秒前
哈哈大笑发布了新的文献求助10
3秒前
叶飞荷发布了新的文献求助10
4秒前
4秒前
竹筏过海应助嘎啦嘎嘎啦采纳,获得40
4秒前
4秒前
123456完成签到 ,获得积分10
5秒前
5秒前
6秒前
乐乐乐乐乐完成签到,获得积分10
6秒前
Q.curiosity完成签到,获得积分10
7秒前
丘比特应助我行我素采纳,获得10
7秒前
ClaudiaCY完成签到,获得积分10
7秒前
7秒前
科研天才完成签到,获得积分10
8秒前
GHOST发布了新的文献求助10
8秒前
8秒前
9秒前
谢家宝树发布了新的文献求助10
9秒前
HEIKU应助Ying采纳,获得10
10秒前
Zzz完成签到,获得积分10
10秒前
LC发布了新的文献求助20
10秒前
刘怀蕊完成签到,获得积分10
11秒前
11秒前
LLL发布了新的文献求助10
11秒前
跳跃乘风完成签到,获得积分10
12秒前
Anxinxin完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762