🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情

Achieving Sales Forecasting with Higher Accuracy and Efficiency: A New Model Based on Modified Transformer

计算机科学 可解释性 销售预测 变压器 编码器 Softmax函数 销售管理 需求预测 嵌入 人工神经网络 数据挖掘 机器学习 人工智能 运筹学 计量经济学 营销 物理 量子力学 电压 工程类 经济 操作系统 业务
作者
Qianying Li,Mingyang Yu
出处
期刊:Journal of Theoretical and Applied Electronic Commerce Research [MDPI AG]
卷期号:18 (4): 1990-2006 被引量:2
标识
DOI:10.3390/jtaer18040100
摘要

With the exponential expansion of e-commerce, an immense volume of historical sales data has been generated and amassed. This influx of data has created an opportunity for more accurate sales forecasting. While various sales forecasting methods and models have been applied in practice, existing ones often struggle to fully harness sales data and manage significant fluctuations. As a result, they frequently fail to make accurate predictions, falling short of meeting enterprise needs. Therefore, it is imperative to explore new models to enhance the accuracy and efficiency of sales forecasting. In this paper, we introduce a model tailored for sales forecasting based on a Transformer with encoder–decoder architecture and multi-head attention mechanisms. We have made specific modifications to the standard Transformer model, such as removing the Softmax layer in the last layer and adapting input embedding, position encoding, and feedforward network components to align with the unique characteristics of sales forecast data and the specific requirements of sales forecasting. The multi-head attention mechanism in our proposed model can directly compute the dot product results in a single step, addressing long-term time-dependent computation challenges while maintaining lower time complexity and greater interpretability. This enhancement significantly contributes to improving the model’s accuracy and efficiency. Furthermore, we provide a comprehensive formula representation of the model for the first time, facilitating better understanding and implementation. We conducted experiments using sales datasets that incorporate various factors influencing sales forecasts, such as seasons, holidays, and promotions. The results demonstrate that our proposed model significantly outperforms seven selected benchmark methods, reducing RMSLE, RMSWLE, NWRMSLE, and RMALE by approximately 48.2%, 48.5%, 45.2, and 63.0%, respectively. Additionally, ablation experiments on the multi-head attention and the number of encoder–decoders validate the rationality of our chosen model parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助李小牙采纳,获得10
2秒前
领导范儿应助与雨天甜甜采纳,获得10
2秒前
3秒前
嘟噜完成签到 ,获得积分10
3秒前
ayoungman完成签到,获得积分10
4秒前
5秒前
慕青应助Chen采纳,获得10
6秒前
闪电完成签到,获得积分10
6秒前
追风少年完成签到,获得积分10
7秒前
香蕉觅云应助赵胜男采纳,获得10
8秒前
ebubekir完成签到,获得积分10
10秒前
小米完成签到,获得积分10
10秒前
科研小民工应助慕豁采纳,获得20
11秒前
12秒前
Dudu完成签到 ,获得积分10
12秒前
13秒前
Hello应助果子采纳,获得10
15秒前
16秒前
今后应助纪元龙采纳,获得10
16秒前
16秒前
16秒前
隐形曼青应助不安小蝴蝶采纳,获得10
19秒前
李小牙发布了新的文献求助10
20秒前
小象发布了新的文献求助10
22秒前
斯文败类应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
搜集达人应助科研通管家采纳,获得10
22秒前
香蕉觅云应助科研通管家采纳,获得30
22秒前
22秒前
烟花应助科研通管家采纳,获得10
22秒前
22秒前
爆米花应助科研通管家采纳,获得10
22秒前
HJM应助科研通管家采纳,获得10
22秒前
Owen应助科研通管家采纳,获得10
23秒前
天天快乐应助安平采纳,获得10
23秒前
锦念应助科研通管家采纳,获得10
23秒前
23秒前
采珺应助科研通管家采纳,获得10
23秒前
SYLH应助科研通管家采纳,获得10
23秒前
隐形曼青应助科研通管家采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
Barth, Derrida and the Language of Theology 500
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
Facharztprüfung Kardiologie 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3599295
求助须知:如何正确求助?哪些是违规求助? 3167908
关于积分的说明 9555641
捐赠科研通 2874435
什么是DOI,文献DOI怎么找? 1578067
邀请新用户注册赠送积分活动 741908
科研通“疑难数据库(出版商)”最低求助积分说明 724930