A feature enhanced RetinaNet-based for instance-level ship recognition

计算机科学 概化理论 冗余(工程) 形势意识 人工智能 能见度 特征(语言学) 显著性(神经科学) 计算机视觉 操作系统 航空航天工程 工程类 光学 数学 哲学 物理 统计 语言学
作者
Jing Cheng,Rongjie Wang,Anhui Lin,Jiang De-song,Yichun Wang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:126: 107133-107133 被引量:9
标识
DOI:10.1016/j.engappai.2023.107133
摘要

Instance-level ship recognition (ISR) has important applications in civil and military fields such as target acquisition, maritime surveillance, and ship situational awareness. Due to the special peculiarities of the marine environment and the rigidity of ships, the changes of viewpoint and scale lead to significant differences in the appearance of ships, which poses a challenge to ISR. Meanwhile, the lack of public datasets for ISR further increases the difficulty of recognition. Considerable work has been conducted on coarse- or fine-grained classification, and little research has been done on ISR. Therefore, a feature enhanced RetinaNet-based for ISR (FERISR) is proposed. First, an attention-aware pyramid network (APN) is designed to enhance the salience features of ship instances and integrate attention-guided features to maximize the use of multilayer information while reducing information redundancy. On this basis, a detail information enhancement module (DFEM) is proposed to refine the fused multi-scale feature maps to improve model performance in scale variations by further enhancing the ship features. At the same time, foggy environment at sea is simulated and the images of foggy and low-light scenario are tested to cope with the impacts caused by low visibility scenes. The ReidDataset is further divided into instance level to make a dataset for ISR(DISR), which is used to discuss the performance of FFRISR on ISR. The generalizability of FFRISR in different scenarios is also discussed. The experimental results demonstrate that FERISR can effectively improve recognition accuracy in viewpoint change, scale change and low visibility scenarios, as well as improve the detection speed. Finally, the effectiveness of APN and DFEM is further verified by ablation experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王树宝发布了新的文献求助10
刚刚
nick发布了新的文献求助10
1秒前
ying发布了新的文献求助10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
王端端完成签到,获得积分10
5秒前
6秒前
小小学神发布了新的文献求助10
6秒前
完美世界应助杨杨杨采纳,获得10
7秒前
8秒前
9秒前
中和皇极发布了新的文献求助10
9秒前
科研通AI5应助hfguwn采纳,获得30
9秒前
朴素太阳完成签到,获得积分20
9秒前
LAN0528完成签到,获得积分10
9秒前
10秒前
sunny661104完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
小小学神完成签到,获得积分10
13秒前
13秒前
13秒前
浮光发布了新的文献求助10
13秒前
xmhxpz发布了新的文献求助10
15秒前
tomorrow完成签到 ,获得积分10
15秒前
16秒前
所所应助烽火戏诸侯采纳,获得10
16秒前
17秒前
ying完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
杨杨杨发布了新的文献求助10
18秒前
王树宝完成签到,获得积分20
18秒前
深情安青应助Chaos采纳,获得10
21秒前
彭于晏应助Tomin采纳,获得10
21秒前
汪汪发布了新的文献求助10
22秒前
抵澳报了发布了新的文献求助10
23秒前
共享精神应助浮光采纳,获得10
24秒前
量子星尘发布了新的文献求助10
25秒前
深情安青应助LL采纳,获得10
25秒前
Shuo Yang完成签到,获得积分10
25秒前
Jasper应助钇点点采纳,获得10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3659480
求助须知:如何正确求助?哪些是违规求助? 3221052
关于积分的说明 9738890
捐赠科研通 2930374
什么是DOI,文献DOI怎么找? 1604392
邀请新用户注册赠送积分活动 757271
科研通“疑难数据库(出版商)”最低求助积分说明 734315