重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Hunting for talent: Firm‐driven labor market search in the United States

杠杆(统计) 业务 劳动经济学 测量数据收集 营销 经济 计算机科学 统计 数学 机器学习
作者
Ines Black,Sharique Hasan,Rembrand Koning
出处
期刊:Strategic Management Journal [Wiley]
卷期号:45 (3): 429-462 被引量:14
标识
DOI:10.1002/smj.3559
摘要

Abstract Research Summary We analyze firm‐driven labor market search, where firms “hunt” for talent rather than rely on workers to apply for vacancies. We leverage three approaches. We develop a model of firm‐driven search and derive equilibrium conditions under which firms use this channel. We test our model's predictions using two data sources. Data from a nationally representative survey of 10,000 workers shows that the percentage hired through recruiting has increased from 4.9% in 1991 to 14.3% in 2022. This share is larger for higher‐skilled workers and those with online profiles on LinkedIn. We complement this analysis with data on the near universe of online job postings from 2010 through 2020. Consistent with our model and worker survey evidence, we find firms that demand higher‐skilled workers or operate in labor markets with heavy LinkedIn use are more likely to “hunt for talent.” Managerial Summary We study the phenomenon of “hunting” for talent, where firms fill open positions by searching for workers and inviting them to a recruiting process, rather than relying on workers to apply directly. We find that the percentage of workers hired through hunting has increased from 4.9% in 1991 to 14.3% in 2022. We propose that firms that rely more on high‐skilled workers and/or operate within industries with a higher share of available candidates with online profiles are more likely to hunt for their talent. We find support for this conjecture using two data sets, documenting the worker and firm side of the labor market. Data from a nationally representative survey of 10,000 workers shows they are more likely to have been “hunted” by their employer if they work in an occupation that requires more skills, or if their industry has more candidates with online profiles. Moreover, data on US‐wide job postings over the past decade shows that firms in need of highly skilled workers are more likely to invest in outbound recruiting capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助老实新筠采纳,获得10
1秒前
1秒前
2秒前
坚定的草丛完成签到,获得积分10
2秒前
所所应助直率的芫采纳,获得10
2秒前
pct完成签到,获得积分10
3秒前
Lucas应助11采纳,获得10
3秒前
4秒前
李健应助tdw采纳,获得10
4秒前
4秒前
我是老大应助zhscu采纳,获得10
6秒前
7秒前
pct发布了新的文献求助10
7秒前
leichuang完成签到,获得积分10
8秒前
在水一方应助apaul采纳,获得10
9秒前
严杰发布了新的文献求助10
10秒前
阎碧空完成签到,获得积分10
10秒前
9999发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
13秒前
14秒前
MEST发布了新的文献求助10
15秒前
情怀应助勤奋的远锋采纳,获得10
15秒前
16秒前
xxx发布了新的文献求助10
17秒前
tdw发布了新的文献求助10
17秒前
18秒前
Hello应助123采纳,获得30
18秒前
直率的芫发布了新的文献求助10
19秒前
19秒前
wzh完成签到,获得积分10
19秒前
张三毛完成签到,获得积分10
20秒前
21秒前
21秒前
隐形曼青应助狂野的柚子采纳,获得10
21秒前
23秒前
万能图书馆应助7890733采纳,获得10
24秒前
魏阳完成签到,获得积分10
25秒前
小张完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467978
求助须知:如何正确求助?哪些是违规求助? 4571531
关于积分的说明 14330478
捐赠科研通 4498059
什么是DOI,文献DOI怎么找? 2464295
邀请新用户注册赠送积分活动 1453038
关于科研通互助平台的介绍 1427737