亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hunting for talent: Firm‐driven labor market search in the United States

杠杆(统计) 业务 劳动经济学 测量数据收集 营销 经济 计算机科学 统计 数学 机器学习
作者
Ines Black,Sharique Hasan,Rembrand Koning
出处
期刊:Strategic Management Journal [Wiley]
卷期号:45 (3): 429-462 被引量:14
标识
DOI:10.1002/smj.3559
摘要

Abstract Research Summary We analyze firm‐driven labor market search, where firms “hunt” for talent rather than rely on workers to apply for vacancies. We leverage three approaches. We develop a model of firm‐driven search and derive equilibrium conditions under which firms use this channel. We test our model's predictions using two data sources. Data from a nationally representative survey of 10,000 workers shows that the percentage hired through recruiting has increased from 4.9% in 1991 to 14.3% in 2022. This share is larger for higher‐skilled workers and those with online profiles on LinkedIn. We complement this analysis with data on the near universe of online job postings from 2010 through 2020. Consistent with our model and worker survey evidence, we find firms that demand higher‐skilled workers or operate in labor markets with heavy LinkedIn use are more likely to “hunt for talent.” Managerial Summary We study the phenomenon of “hunting” for talent, where firms fill open positions by searching for workers and inviting them to a recruiting process, rather than relying on workers to apply directly. We find that the percentage of workers hired through hunting has increased from 4.9% in 1991 to 14.3% in 2022. We propose that firms that rely more on high‐skilled workers and/or operate within industries with a higher share of available candidates with online profiles are more likely to hunt for their talent. We find support for this conjecture using two data sets, documenting the worker and firm side of the labor market. Data from a nationally representative survey of 10,000 workers shows they are more likely to have been “hunted” by their employer if they work in an occupation that requires more skills, or if their industry has more candidates with online profiles. Moreover, data on US‐wide job postings over the past decade shows that firms in need of highly skilled workers are more likely to invest in outbound recruiting capabilities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助Yan采纳,获得80
4秒前
薛定谔的猫完成签到,获得积分10
20秒前
BowieHuang应助科研通管家采纳,获得10
32秒前
酷波er应助景木游采纳,获得10
37秒前
研白完成签到 ,获得积分10
53秒前
呜呼完成签到,获得积分10
1分钟前
1分钟前
Yan关注了科研通微信公众号
1分钟前
2分钟前
Yan发布了新的文献求助80
2分钟前
2分钟前
赘婿应助科研通管家采纳,获得10
2分钟前
陈欣瑶完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
景木游发布了新的文献求助10
3分钟前
明理太君发布了新的文献求助10
3分钟前
3分钟前
汪汪淬冰冰完成签到,获得积分10
3分钟前
3分钟前
SimonShaw完成签到,获得积分10
3分钟前
犬来八荒发布了新的文献求助10
3分钟前
Akim应助犬来八荒采纳,获得20
3分钟前
3分钟前
明芬发布了新的文献求助10
3分钟前
tgytgy完成签到,获得积分10
3分钟前
ceeray23发布了新的文献求助20
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
4分钟前
您疼肚发布了新的文献求助10
5分钟前
Decheng_xiao完成签到 ,获得积分10
5分钟前
GIA完成签到,获得积分10
5分钟前
5分钟前
5分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
小二郎应助科研通管家采纳,获得10
6分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599818
求助须知:如何正确求助?哪些是违规求助? 4685557
关于积分的说明 14838621
捐赠科研通 4671576
什么是DOI,文献DOI怎么找? 2538288
邀请新用户注册赠送积分活动 1505554
关于科研通互助平台的介绍 1470945