清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Hunting for talent: Firm‐driven labor market search in the United States

杠杆(统计) 业务 劳动经济学 测量数据收集 营销 经济 计算机科学 统计 数学 机器学习
作者
Ines Black,Sharique Hasan,Rembrand Koning
出处
期刊:Strategic Management Journal [Wiley]
卷期号:45 (3): 429-462 被引量:14
标识
DOI:10.1002/smj.3559
摘要

Abstract Research Summary We analyze firm‐driven labor market search, where firms “hunt” for talent rather than rely on workers to apply for vacancies. We leverage three approaches. We develop a model of firm‐driven search and derive equilibrium conditions under which firms use this channel. We test our model's predictions using two data sources. Data from a nationally representative survey of 10,000 workers shows that the percentage hired through recruiting has increased from 4.9% in 1991 to 14.3% in 2022. This share is larger for higher‐skilled workers and those with online profiles on LinkedIn. We complement this analysis with data on the near universe of online job postings from 2010 through 2020. Consistent with our model and worker survey evidence, we find firms that demand higher‐skilled workers or operate in labor markets with heavy LinkedIn use are more likely to “hunt for talent.” Managerial Summary We study the phenomenon of “hunting” for talent, where firms fill open positions by searching for workers and inviting them to a recruiting process, rather than relying on workers to apply directly. We find that the percentage of workers hired through hunting has increased from 4.9% in 1991 to 14.3% in 2022. We propose that firms that rely more on high‐skilled workers and/or operate within industries with a higher share of available candidates with online profiles are more likely to hunt for their talent. We find support for this conjecture using two data sets, documenting the worker and firm side of the labor market. Data from a nationally representative survey of 10,000 workers shows they are more likely to have been “hunted” by their employer if they work in an occupation that requires more skills, or if their industry has more candidates with online profiles. Moreover, data on US‐wide job postings over the past decade shows that firms in need of highly skilled workers are more likely to invest in outbound recruiting capabilities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然的剑通完成签到 ,获得积分10
2秒前
耍酷鼠标完成签到 ,获得积分0
7秒前
孙老师完成签到 ,获得积分10
20秒前
Heart_of_Stone完成签到 ,获得积分10
26秒前
俏皮元珊完成签到 ,获得积分10
31秒前
宝贝完成签到 ,获得积分10
34秒前
xiaofeixia完成签到 ,获得积分10
36秒前
LiangRen完成签到 ,获得积分10
44秒前
AneyWinter66应助微S采纳,获得10
49秒前
小田完成签到 ,获得积分10
1分钟前
goodsheep完成签到 ,获得积分10
1分钟前
helen李完成签到 ,获得积分10
1分钟前
赵赵完成签到 ,获得积分10
1分钟前
科科通通完成签到,获得积分10
1分钟前
柴郡喵完成签到,获得积分10
1分钟前
0m0完成签到 ,获得积分10
1分钟前
zm完成签到 ,获得积分10
1分钟前
大饼完成签到 ,获得积分10
1分钟前
空白完成签到 ,获得积分10
2分钟前
xinjiasuki完成签到 ,获得积分10
2分钟前
2分钟前
小天小天完成签到 ,获得积分10
2分钟前
白昼完成签到 ,获得积分10
2分钟前
弧光完成签到 ,获得积分0
2分钟前
feiyang完成签到 ,获得积分10
2分钟前
大胆的碧菡完成签到,获得积分10
2分钟前
图南完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
zw完成签到,获得积分10
2分钟前
Xzx1995完成签到 ,获得积分10
2分钟前
如意书桃完成签到 ,获得积分10
3分钟前
大雪完成签到 ,获得积分10
3分钟前
3分钟前
年轻千愁完成签到 ,获得积分10
3分钟前
蔡勇强完成签到 ,获得积分10
3分钟前
Wenwen0809完成签到 ,获得积分20
3分钟前
海贼王的男人完成签到 ,获得积分10
3分钟前
从全世界路过完成签到 ,获得积分10
3分钟前
4分钟前
詹姆斯哈登完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628626
求助须知:如何正确求助?哪些是违规求助? 4717900
关于积分的说明 14964650
捐赠科研通 4786466
什么是DOI,文献DOI怎么找? 2555860
邀请新用户注册赠送积分活动 1517014
关于科研通互助平台的介绍 1477700