亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hunting for talent: Firm‐driven labor market search in the United States

杠杆(统计) 业务 劳动经济学 测量数据收集 营销 经济 计算机科学 统计 数学 机器学习
作者
Ines Black,Sharique Hasan,Rembrand Koning
出处
期刊:Strategic Management Journal [Wiley]
卷期号:45 (3): 429-462 被引量:14
标识
DOI:10.1002/smj.3559
摘要

Abstract Research Summary We analyze firm‐driven labor market search, where firms “hunt” for talent rather than rely on workers to apply for vacancies. We leverage three approaches. We develop a model of firm‐driven search and derive equilibrium conditions under which firms use this channel. We test our model's predictions using two data sources. Data from a nationally representative survey of 10,000 workers shows that the percentage hired through recruiting has increased from 4.9% in 1991 to 14.3% in 2022. This share is larger for higher‐skilled workers and those with online profiles on LinkedIn. We complement this analysis with data on the near universe of online job postings from 2010 through 2020. Consistent with our model and worker survey evidence, we find firms that demand higher‐skilled workers or operate in labor markets with heavy LinkedIn use are more likely to “hunt for talent.” Managerial Summary We study the phenomenon of “hunting” for talent, where firms fill open positions by searching for workers and inviting them to a recruiting process, rather than relying on workers to apply directly. We find that the percentage of workers hired through hunting has increased from 4.9% in 1991 to 14.3% in 2022. We propose that firms that rely more on high‐skilled workers and/or operate within industries with a higher share of available candidates with online profiles are more likely to hunt for their talent. We find support for this conjecture using two data sets, documenting the worker and firm side of the labor market. Data from a nationally representative survey of 10,000 workers shows they are more likely to have been “hunted” by their employer if they work in an occupation that requires more skills, or if their industry has more candidates with online profiles. Moreover, data on US‐wide job postings over the past decade shows that firms in need of highly skilled workers are more likely to invest in outbound recruiting capabilities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
kenti2023完成签到 ,获得积分10
4秒前
shinn发布了新的文献求助10
5秒前
浩whu完成签到,获得积分10
5秒前
北宸发布了新的文献求助10
6秒前
所所应助宇宙超人007008采纳,获得10
6秒前
Chen完成签到,获得积分10
8秒前
无花果应助斯文从筠采纳,获得10
10秒前
哈哈哈完成签到,获得积分10
10秒前
桐桐应助shinn采纳,获得10
11秒前
13秒前
微笑的依凝完成签到,获得积分10
14秒前
ferritin完成签到 ,获得积分10
14秒前
沢雨完成签到 ,获得积分10
14秒前
16秒前
生椰拿铁完成签到 ,获得积分10
18秒前
叶子完成签到 ,获得积分10
18秒前
19秒前
czy发布了新的文献求助30
19秒前
ly发布了新的文献求助10
20秒前
科研通AI6.1应助nasa采纳,获得10
21秒前
ecnu搬砖人完成签到,获得积分10
25秒前
26秒前
乐乐应助ly采纳,获得10
26秒前
大模型应助ffddsdc采纳,获得10
28秒前
淡定的冬寒完成签到,获得积分10
30秒前
30秒前
juphen2发布了新的文献求助10
31秒前
客服完成签到 ,获得积分10
32秒前
111完成签到 ,获得积分10
32秒前
慕青应助sunstar采纳,获得10
34秒前
ly完成签到,获得积分10
34秒前
35秒前
斯文从筠发布了新的文献求助10
35秒前
星辰大海应助大力的图图采纳,获得10
35秒前
36秒前
小丸子完成签到,获得积分10
40秒前
shinn发布了新的文献求助10
41秒前
42秒前
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772246
求助须知:如何正确求助?哪些是违规求助? 5596912
关于积分的说明 15429307
捐赠科研通 4905268
什么是DOI,文献DOI怎么找? 2639301
邀请新用户注册赠送积分活动 1587230
关于科研通互助平台的介绍 1542080