Hunting for talent: Firm‐driven labor market search in the United States

杠杆(统计) 业务 劳动经济学 测量数据收集 营销 经济 计算机科学 统计 数学 机器学习
作者
Ines Black,Sharique Hasan,Rembrand Koning
出处
期刊:Strategic Management Journal [Wiley]
卷期号:45 (3): 429-462 被引量:14
标识
DOI:10.1002/smj.3559
摘要

Abstract Research Summary We analyze firm‐driven labor market search, where firms “hunt” for talent rather than rely on workers to apply for vacancies. We leverage three approaches. We develop a model of firm‐driven search and derive equilibrium conditions under which firms use this channel. We test our model's predictions using two data sources. Data from a nationally representative survey of 10,000 workers shows that the percentage hired through recruiting has increased from 4.9% in 1991 to 14.3% in 2022. This share is larger for higher‐skilled workers and those with online profiles on LinkedIn. We complement this analysis with data on the near universe of online job postings from 2010 through 2020. Consistent with our model and worker survey evidence, we find firms that demand higher‐skilled workers or operate in labor markets with heavy LinkedIn use are more likely to “hunt for talent.” Managerial Summary We study the phenomenon of “hunting” for talent, where firms fill open positions by searching for workers and inviting them to a recruiting process, rather than relying on workers to apply directly. We find that the percentage of workers hired through hunting has increased from 4.9% in 1991 to 14.3% in 2022. We propose that firms that rely more on high‐skilled workers and/or operate within industries with a higher share of available candidates with online profiles are more likely to hunt for their talent. We find support for this conjecture using two data sets, documenting the worker and firm side of the labor market. Data from a nationally representative survey of 10,000 workers shows they are more likely to have been “hunted” by their employer if they work in an occupation that requires more skills, or if their industry has more candidates with online profiles. Moreover, data on US‐wide job postings over the past decade shows that firms in need of highly skilled workers are more likely to invest in outbound recruiting capabilities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣喜十八完成签到,获得积分10
刚刚
CC发布了新的文献求助10
1秒前
111完成签到,获得积分10
1秒前
Qiu完成签到,获得积分10
3秒前
3秒前
mmmaosheng完成签到,获得积分10
5秒前
啦啦啦完成签到,获得积分10
5秒前
5秒前
善学以致用应助随便采纳,获得10
5秒前
灰灰完成签到,获得积分10
6秒前
f1mike110发布了新的文献求助10
7秒前
陆倩完成签到,获得积分10
7秒前
天天快乐应助lihuahui采纳,获得10
8秒前
9秒前
让我毕业吧完成签到,获得积分10
9秒前
舒心完成签到 ,获得积分20
9秒前
CC完成签到,获得积分10
10秒前
Criminology34应助杨一乐采纳,获得10
10秒前
wanci应助细腻的夜天采纳,获得10
10秒前
李爱国应助工大搬砖战神采纳,获得10
10秒前
lalala发布了新的文献求助10
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
Coai517完成签到 ,获得积分10
12秒前
12秒前
今后应助认真的TOTORO采纳,获得10
13秒前
复杂的含蕾完成签到 ,获得积分10
13秒前
...完成签到,获得积分10
14秒前
游一完成签到,获得积分10
14秒前
细雨听风完成签到,获得积分10
14秒前
胡佳文完成签到,获得积分10
15秒前
风吹麦田应助15169928657采纳,获得30
15秒前
子车凡完成签到,获得积分10
16秒前
阔达凝天发布了新的文献求助10
16秒前
Lucas应助sxmt123456789采纳,获得30
16秒前
16秒前
orchid发布了新的文献求助50
16秒前
SONG完成签到,获得积分10
16秒前
17秒前
123发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809