Hunting for talent: Firm‐driven labor market search in the United States

杠杆(统计) 业务 劳动经济学 测量数据收集 营销 经济 计算机科学 统计 数学 机器学习
作者
Ines Black,Sharique Hasan,Rembrand Koning
出处
期刊:Strategic Management Journal [Wiley]
卷期号:45 (3): 429-462 被引量:14
标识
DOI:10.1002/smj.3559
摘要

Abstract Research Summary We analyze firm‐driven labor market search, where firms “hunt” for talent rather than rely on workers to apply for vacancies. We leverage three approaches. We develop a model of firm‐driven search and derive equilibrium conditions under which firms use this channel. We test our model's predictions using two data sources. Data from a nationally representative survey of 10,000 workers shows that the percentage hired through recruiting has increased from 4.9% in 1991 to 14.3% in 2022. This share is larger for higher‐skilled workers and those with online profiles on LinkedIn. We complement this analysis with data on the near universe of online job postings from 2010 through 2020. Consistent with our model and worker survey evidence, we find firms that demand higher‐skilled workers or operate in labor markets with heavy LinkedIn use are more likely to “hunt for talent.” Managerial Summary We study the phenomenon of “hunting” for talent, where firms fill open positions by searching for workers and inviting them to a recruiting process, rather than relying on workers to apply directly. We find that the percentage of workers hired through hunting has increased from 4.9% in 1991 to 14.3% in 2022. We propose that firms that rely more on high‐skilled workers and/or operate within industries with a higher share of available candidates with online profiles are more likely to hunt for their talent. We find support for this conjecture using two data sets, documenting the worker and firm side of the labor market. Data from a nationally representative survey of 10,000 workers shows they are more likely to have been “hunted” by their employer if they work in an occupation that requires more skills, or if their industry has more candidates with online profiles. Moreover, data on US‐wide job postings over the past decade shows that firms in need of highly skilled workers are more likely to invest in outbound recruiting capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辉夜折影完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
张浮生完成签到,获得积分10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得30
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
WHT完成签到,获得积分10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
王浩完成签到,获得积分10
2秒前
yufanhui应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
3秒前
sunrase完成签到,获得积分10
3秒前
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
yufanhui应助科研通管家采纳,获得10
3秒前
2rrd发布了新的文献求助10
3秒前
无花果应助科研通管家采纳,获得30
3秒前
lan完成签到,获得积分10
3秒前
紧张的刺猬完成签到,获得积分10
3秒前
阿苏完成签到 ,获得积分10
4秒前
537发布了新的文献求助30
4秒前
chenbin1105完成签到,获得积分10
4秒前
yyyfff完成签到,获得积分10
4秒前
CR7应助冬枣枣采纳,获得20
4秒前
领导范儿应助DDAIDN采纳,获得30
5秒前
huofuman完成签到,获得积分10
5秒前
doclarrin完成签到 ,获得积分10
6秒前
Twinkle完成签到,获得积分10
6秒前
huiseXT完成签到,获得积分10
6秒前
端庄谷南完成签到 ,获得积分10
6秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4614030
求助须知:如何正确求助?哪些是违规求助? 4018429
关于积分的说明 12438324
捐赠科研通 3701118
什么是DOI,文献DOI怎么找? 2041105
邀请新用户注册赠送积分活动 1073803
科研通“疑难数据库(出版商)”最低求助积分说明 957479