An upscaling minute-level regional photovoltaic power forecasting scheme

光伏系统 电力系统 计算机科学 功率(物理) 人工神经网络 发电站 发电 可靠性工程 工程类 人工智能 电气工程 物理 量子力学
作者
Xiangjian Meng,Xinyu Shi,Weiqi Wang,Yumin Zhang,Feng Gao
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier]
卷期号:155: 109609-109609 被引量:7
标识
DOI:10.1016/j.ijepes.2023.109609
摘要

Along with the increasing penetration of photovoltaic (PV) power generation, regional power forecasting becomes more and more critical for stable and economical operation of power system. The key challenge of regional PV power forecasting technology is the lack of complete and accurate historical power data since not all PV plants are equipped with the precise real-time output power monitoring system. Besides, the computation burden will be heavy when the number of PV plants in the target region is large. This paper therefore proposes an upscaling minute-level regional PV power forecasting scheme using the data of the selected reference PV plants. In this paper, a novel method of reference PV plants selection is proposed by comprehensively considering the prediction accuracy of artificial neural network (ANN) as well as Pearson correlation coefficient. The reference PV plant selection coefficient μ is introduced as the comprehensive indicator for reference PV plant selection, which incorporates Pearson correlation coefficient and MAPE. In addition, a PV output power correction method is assumed to guarantee the proper operation of regional power forecasting. Besides, this paper proposes a flexible approach to effectively decrease the accumulated error of rolling forecasting by integrating the forecasting results under different temporal resolutions. In specific, the power forecasting results in temporal resolutions of 1 min, 5 min and 15 min are simultaneously derived and the performance between the traditional rolling forecasting and the proposed method is compared. The validity of the proposed method is finally verified using the collected historical power data of PV plants installed in a city of Eastern China. For time resolution of 1 min, 5 mins and 10 mins, the corresponding RMSE are 6.56, 5.73 and 4.85 and corresponding MAPE are 4.04%, 3.45% and 2.86%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
GSQ发布了新的文献求助10
2秒前
Quanquan完成签到 ,获得积分10
2秒前
4秒前
4秒前
jia发布了新的文献求助10
5秒前
桐桐应助林宇采纳,获得10
5秒前
xianer发布了新的文献求助10
5秒前
vippp发布了新的文献求助10
5秒前
5秒前
莉亚发布了新的文献求助10
5秒前
蜂蜜兑多了完成签到,获得积分10
5秒前
clamon完成签到,获得积分10
6秒前
6秒前
善学以致用应助飘逸楷瑞采纳,获得10
7秒前
GSQ完成签到,获得积分10
7秒前
8秒前
9秒前
啊啊啊lei发布了新的文献求助10
9秒前
香蕉觅云应助跳跃的乌龟采纳,获得10
10秒前
10秒前
科研小垃圾应助从心从心采纳,获得20
11秒前
搜集达人应助孔曼卉采纳,获得10
11秒前
11秒前
12秒前
saber_panda完成签到,获得积分10
12秒前
赘婿应助野草采纳,获得10
13秒前
小六完成签到,获得积分10
14秒前
无辜的鞋子完成签到,获得积分10
15秒前
J卡卡K发布了新的文献求助10
15秒前
15秒前
Eyring_go完成签到,获得积分10
17秒前
猪突猛进完成签到,获得积分10
17秒前
大汉忠臣曹孟德完成签到,获得积分10
17秒前
xuxu96应助小推车女士采纳,获得10
18秒前
18秒前
好会呀发布了新的文献求助10
18秒前
jiayourui完成签到,获得积分10
19秒前
superfatcat完成签到,获得积分10
19秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Semiconductor Process Reliability in Practice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206106
求助须知:如何正确求助?哪些是违规求助? 2855475
关于积分的说明 8099633
捐赠科研通 2520516
什么是DOI,文献DOI怎么找? 1353428
科研通“疑难数据库(出版商)”最低求助积分说明 641741
邀请新用户注册赠送积分活动 612850