An upscaling minute-level regional photovoltaic power forecasting scheme

光伏系统 电力系统 计算机科学 功率(物理) 人工神经网络 发电站 发电 可靠性工程 工程类 人工智能 电气工程 量子力学 物理
作者
Xiangjian Meng,Xinyu Shi,Weiqi Wang,Yumin Zhang,Feng Gao
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier BV]
卷期号:155: 109609-109609 被引量:7
标识
DOI:10.1016/j.ijepes.2023.109609
摘要

Along with the increasing penetration of photovoltaic (PV) power generation, regional power forecasting becomes more and more critical for stable and economical operation of power system. The key challenge of regional PV power forecasting technology is the lack of complete and accurate historical power data since not all PV plants are equipped with the precise real-time output power monitoring system. Besides, the computation burden will be heavy when the number of PV plants in the target region is large. This paper therefore proposes an upscaling minute-level regional PV power forecasting scheme using the data of the selected reference PV plants. In this paper, a novel method of reference PV plants selection is proposed by comprehensively considering the prediction accuracy of artificial neural network (ANN) as well as Pearson correlation coefficient. The reference PV plant selection coefficient μ is introduced as the comprehensive indicator for reference PV plant selection, which incorporates Pearson correlation coefficient and MAPE. In addition, a PV output power correction method is assumed to guarantee the proper operation of regional power forecasting. Besides, this paper proposes a flexible approach to effectively decrease the accumulated error of rolling forecasting by integrating the forecasting results under different temporal resolutions. In specific, the power forecasting results in temporal resolutions of 1 min, 5 min and 15 min are simultaneously derived and the performance between the traditional rolling forecasting and the proposed method is compared. The validity of the proposed method is finally verified using the collected historical power data of PV plants installed in a city of Eastern China. For time resolution of 1 min, 5 mins and 10 mins, the corresponding RMSE are 6.56, 5.73 and 4.85 and corresponding MAPE are 4.04%, 3.45% and 2.86%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘欣怡完成签到,获得积分20
刚刚
酷酷的西装关注了科研通微信公众号
1秒前
Feifei133发布了新的文献求助10
1秒前
2秒前
共享精神应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
东风徐来发布了新的文献求助50
4秒前
木湾完成签到,获得积分10
4秒前
迅速的雁山关注了科研通微信公众号
4秒前
4秒前
djiwisksk66应助踏实十八采纳,获得10
5秒前
crush_zyd完成签到,获得积分10
5秒前
Priority应助立军采纳,获得30
6秒前
yookia应助立军采纳,获得10
6秒前
香蕉觅云应助立军采纳,获得10
6秒前
无情的君浩应助Acvdonoe采纳,获得10
7秒前
liu完成签到,获得积分10
8秒前
优雅山柏发布了新的文献求助10
8秒前
8秒前
Lily发布了新的文献求助10
8秒前
派大星的海洋裤完成签到,获得积分10
9秒前
9秒前
传奇3应助酱紫采纳,获得10
10秒前
emmmm发布了新的文献求助10
10秒前
10秒前
由又柔发布了新的文献求助10
10秒前
鬲木发布了新的文献求助10
11秒前
卷心菜完成签到,获得积分10
11秒前
ocean发布了新的文献求助10
15秒前
许娜发布了新的文献求助10
16秒前
17秒前
星辰大海应助猪猪hero采纳,获得10
17秒前
舒适以山发布了新的文献求助30
17秒前
18秒前
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950900
求助须知:如何正确求助?哪些是违规求助? 3496263
关于积分的说明 11081235
捐赠科研通 3226738
什么是DOI,文献DOI怎么找? 1783955
邀请新用户注册赠送积分活动 867992
科研通“疑难数据库(出版商)”最低求助积分说明 800993