An upscaling minute-level regional photovoltaic power forecasting scheme

光伏系统 电力系统 计算机科学 功率(物理) 人工神经网络 发电站 发电 可靠性工程 工程类 人工智能 电气工程 物理 量子力学
作者
Xiangjian Meng,Xinyu Shi,Weiqi Wang,Yumin Zhang,Feng Gao
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier BV]
卷期号:155: 109609-109609 被引量:7
标识
DOI:10.1016/j.ijepes.2023.109609
摘要

Along with the increasing penetration of photovoltaic (PV) power generation, regional power forecasting becomes more and more critical for stable and economical operation of power system. The key challenge of regional PV power forecasting technology is the lack of complete and accurate historical power data since not all PV plants are equipped with the precise real-time output power monitoring system. Besides, the computation burden will be heavy when the number of PV plants in the target region is large. This paper therefore proposes an upscaling minute-level regional PV power forecasting scheme using the data of the selected reference PV plants. In this paper, a novel method of reference PV plants selection is proposed by comprehensively considering the prediction accuracy of artificial neural network (ANN) as well as Pearson correlation coefficient. The reference PV plant selection coefficient μ is introduced as the comprehensive indicator for reference PV plant selection, which incorporates Pearson correlation coefficient and MAPE. In addition, a PV output power correction method is assumed to guarantee the proper operation of regional power forecasting. Besides, this paper proposes a flexible approach to effectively decrease the accumulated error of rolling forecasting by integrating the forecasting results under different temporal resolutions. In specific, the power forecasting results in temporal resolutions of 1 min, 5 min and 15 min are simultaneously derived and the performance between the traditional rolling forecasting and the proposed method is compared. The validity of the proposed method is finally verified using the collected historical power data of PV plants installed in a city of Eastern China. For time resolution of 1 min, 5 mins and 10 mins, the corresponding RMSE are 6.56, 5.73 and 4.85 and corresponding MAPE are 4.04%, 3.45% and 2.86%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
顺子快乐完成签到,获得积分10
1秒前
斯文败类应助欣慰猕猴桃采纳,获得10
2秒前
研友_LNMmW8发布了新的文献求助10
2秒前
2秒前
2秒前
负责丹蝶发布了新的文献求助10
2秒前
桐桐应助winnerbing采纳,获得10
2秒前
WYP完成签到,获得积分10
3秒前
Ashley发布了新的文献求助10
3秒前
望北楼主发布了新的文献求助10
3秒前
Hana完成签到,获得积分10
4秒前
HCKACECE完成签到,获得积分10
4秒前
xin发布了新的文献求助10
4秒前
所所应助ddd采纳,获得10
4秒前
桐桐应助鳄鱼采纳,获得10
5秒前
陶醉访梦发布了新的文献求助10
5秒前
5秒前
zzx完成签到,获得积分10
5秒前
秦亦云发布了新的文献求助10
5秒前
科研通AI6应助张鱼小王子采纳,获得10
5秒前
年轻的觅风完成签到,获得积分10
6秒前
七怪应助复杂惜霜采纳,获得10
6秒前
6秒前
6秒前
minmin959完成签到,获得积分10
7秒前
科研花完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
爱喝橘子汽水完成签到 ,获得积分10
8秒前
青鸟完成签到,获得积分10
9秒前
123456发布了新的文献求助30
9秒前
9秒前
9秒前
9秒前
开心就吃猕猴桃完成签到,获得积分10
9秒前
晒黑的雪碧完成签到,获得积分10
10秒前
lalala完成签到,获得积分10
10秒前
上官若男应助无情汉堡采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260929
求助须知:如何正确求助?哪些是违规求助? 4422163
关于积分的说明 13765353
捐赠科研通 4296568
什么是DOI,文献DOI怎么找? 2357408
邀请新用户注册赠送积分活动 1353709
关于科研通互助平台的介绍 1314957