An upscaling minute-level regional photovoltaic power forecasting scheme

光伏系统 电力系统 计算机科学 功率(物理) 人工神经网络 发电站 发电 可靠性工程 工程类 人工智能 电气工程 量子力学 物理
作者
Xiangjian Meng,Xinyu Shi,Weiqi Wang,Yumin Zhang,Feng Gao
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier BV]
卷期号:155: 109609-109609 被引量:7
标识
DOI:10.1016/j.ijepes.2023.109609
摘要

Along with the increasing penetration of photovoltaic (PV) power generation, regional power forecasting becomes more and more critical for stable and economical operation of power system. The key challenge of regional PV power forecasting technology is the lack of complete and accurate historical power data since not all PV plants are equipped with the precise real-time output power monitoring system. Besides, the computation burden will be heavy when the number of PV plants in the target region is large. This paper therefore proposes an upscaling minute-level regional PV power forecasting scheme using the data of the selected reference PV plants. In this paper, a novel method of reference PV plants selection is proposed by comprehensively considering the prediction accuracy of artificial neural network (ANN) as well as Pearson correlation coefficient. The reference PV plant selection coefficient μ is introduced as the comprehensive indicator for reference PV plant selection, which incorporates Pearson correlation coefficient and MAPE. In addition, a PV output power correction method is assumed to guarantee the proper operation of regional power forecasting. Besides, this paper proposes a flexible approach to effectively decrease the accumulated error of rolling forecasting by integrating the forecasting results under different temporal resolutions. In specific, the power forecasting results in temporal resolutions of 1 min, 5 min and 15 min are simultaneously derived and the performance between the traditional rolling forecasting and the proposed method is compared. The validity of the proposed method is finally verified using the collected historical power data of PV plants installed in a city of Eastern China. For time resolution of 1 min, 5 mins and 10 mins, the corresponding RMSE are 6.56, 5.73 and 4.85 and corresponding MAPE are 4.04%, 3.45% and 2.86%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甘蔗发布了新的文献求助30
刚刚
刚刚
淡然谷秋完成签到 ,获得积分10
1秒前
上官若男应助柒月樊霜采纳,获得10
1秒前
木头人呐完成签到 ,获得积分10
1秒前
2秒前
2秒前
3秒前
诚心中恶发布了新的文献求助10
3秒前
背书强完成签到 ,获得积分10
3秒前
3秒前
Jack123完成签到,获得积分10
4秒前
SciGPT应助认真的缘郡采纳,获得10
4秒前
4秒前
大模型应助乖猫要努力采纳,获得10
4秒前
5秒前
5秒前
哒哒发布了新的文献求助10
5秒前
5秒前
5秒前
眼睛大又蓝完成签到,获得积分10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
shihuishui完成签到,获得积分10
6秒前
田様应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
6秒前
无花果应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得30
6秒前
小蘑菇应助科研通管家采纳,获得30
7秒前
zll发布了新的文献求助10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
clientprogram应助科研通管家采纳,获得30
7秒前
7秒前
Akim应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615619
求助须知:如何正确求助?哪些是违规求助? 4019269
关于积分的说明 12441658
捐赠科研通 3702297
什么是DOI,文献DOI怎么找? 2041522
邀请新用户注册赠送积分活动 1074192
科研通“疑难数据库(出版商)”最低求助积分说明 957826