A Comparative Study of the Electronic Transport and Gas-Sensitive Properties of Graphene+, T-graphene, Net-graphene, and Biphenylene-Based Two-Dimensional Devices

石墨烯 联苯 材料科学 石墨烯纳米带 分子 密度泛函理论 费米能级 费米能量 化学物理 碳纤维 纳米技术 计算化学 化学 亚苯基 电子 有机化学 物理 复合材料 量子力学 复合数 聚合物
作者
Luzhen Xie,Tong Chen,Xiansheng Dong,Guogang Liu,Hui Li,Ning Yang,Desheng Liu,Xianbo Xiao
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:8 (9): 3510-3519 被引量:29
标识
DOI:10.1021/acssensors.3c01087
摘要

The electronic transport properties of the four carbon isomers: graphene+, T-graphene, net-graphene, and biphenylene, as well as the gas-sensing properties to the nitrogen-based gas molecules including NO2, NO, and NH3 molecules, are systematically studied and comparatively analyzed by combining the density functional theory with the nonequilibrium Green's function. The four carbon isomers are metallic, especially with graphene+ being a Dirac metal due to the two Dirac cones present at the Fermi energy level. The two-dimensional devices based on these four carbon isomers exhibit good conduction properties in the order of biphenylene > T-graphene > graphene+ > net-graphene. More interestingly, net-graphene-based and biphenylene-based devices demonstrate significant anisotropic transport properties. The gas sensors based on the above four structures all have good selectivity and sensitivity to the NO2 molecule, among which T-graphene-based gas sensors are the most prominent with a maximum ΔI value of 39.98 μA, being only three-fifths of the original. In addition, graphene+-based and biphenylene-based gas sensors are also sensitive to the NO molecule with maximum ΔI values of 29.42 and 25.63 μA, respectively. However, the four gas sensors are all physically adsorbed for the NH3 molecule. By the adsorption energy, charge transfer, electron localization functions, and molecular projection of self-consistent Hamiltonian states, the mechanisms behind all properties can be clearly explained. This work shows the potential of graphene+, T-graphene, net-graphene, and biphenylene for the detection of toxic molecules of NO and NO2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助苹果颖采纳,获得20
刚刚
ygs完成签到,获得积分10
1秒前
传奇3应助安走天采纳,获得10
1秒前
浅蓝色发布了新的文献求助10
2秒前
丘比特应助wyr采纳,获得10
2秒前
zhangshixian完成签到,获得积分10
3秒前
萌dreaming完成签到,获得积分10
3秒前
chen完成签到,获得积分10
3秒前
王昭完成签到,获得积分10
4秒前
Roxxane发布了新的文献求助10
4秒前
Dita发布了新的文献求助10
5秒前
Damy完成签到,获得积分10
5秒前
5秒前
SciGPT应助lin采纳,获得10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
傅荣轩完成签到,获得积分10
7秒前
Yi完成签到,获得积分10
7秒前
8秒前
Owen应助whn采纳,获得10
8秒前
情怀应助刘晚柠采纳,获得10
8秒前
小杜发布了新的文献求助10
8秒前
拾星完成签到 ,获得积分10
8秒前
woollen2022发布了新的文献求助10
9秒前
张张张xxx完成签到,获得积分10
9秒前
希望天下0贩的0应助kohu采纳,获得10
9秒前
wanli445完成签到,获得积分10
10秒前
YCD完成签到,获得积分10
10秒前
小洁发布了新的文献求助10
11秒前
可爱的函函应助选华采纳,获得10
11秒前
11秒前
甘博发布了新的文献求助10
11秒前
小学渣发布了新的文献求助10
12秒前
大厨懒洋洋完成签到,获得积分10
12秒前
13秒前
失眠百川完成签到 ,获得积分10
13秒前
Roxxane完成签到,获得积分10
13秒前
13秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954728
求助须知:如何正确求助?哪些是违规求助? 3500844
关于积分的说明 11101288
捐赠科研通 3231320
什么是DOI,文献DOI怎么找? 1786401
邀请新用户注册赠送积分活动 870028
科研通“疑难数据库(出版商)”最低求助积分说明 801771