A Comparative Study of the Electronic Transport and Gas-Sensitive Properties of Graphene+, T-graphene, Net-graphene, and Biphenylene-Based Two-Dimensional Devices

石墨烯 联苯 材料科学 石墨烯纳米带 分子 密度泛函理论 费米能级 费米能量 化学物理 碳纤维 纳米技术 计算化学 化学 亚苯基 电子 有机化学 物理 复合材料 量子力学 复合数 聚合物
作者
Luzhen Xie,Tong Chen,Xiansheng Dong,Guogang Liu,Hui Li,Ning Yang,Desheng Liu,Xianbo Xiao
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:8 (9): 3510-3519 被引量:29
标识
DOI:10.1021/acssensors.3c01087
摘要

The electronic transport properties of the four carbon isomers: graphene+, T-graphene, net-graphene, and biphenylene, as well as the gas-sensing properties to the nitrogen-based gas molecules including NO2, NO, and NH3 molecules, are systematically studied and comparatively analyzed by combining the density functional theory with the nonequilibrium Green's function. The four carbon isomers are metallic, especially with graphene+ being a Dirac metal due to the two Dirac cones present at the Fermi energy level. The two-dimensional devices based on these four carbon isomers exhibit good conduction properties in the order of biphenylene > T-graphene > graphene+ > net-graphene. More interestingly, net-graphene-based and biphenylene-based devices demonstrate significant anisotropic transport properties. The gas sensors based on the above four structures all have good selectivity and sensitivity to the NO2 molecule, among which T-graphene-based gas sensors are the most prominent with a maximum ΔI value of 39.98 μA, being only three-fifths of the original. In addition, graphene+-based and biphenylene-based gas sensors are also sensitive to the NO molecule with maximum ΔI values of 29.42 and 25.63 μA, respectively. However, the four gas sensors are all physically adsorbed for the NH3 molecule. By the adsorption energy, charge transfer, electron localization functions, and molecular projection of self-consistent Hamiltonian states, the mechanisms behind all properties can be clearly explained. This work shows the potential of graphene+, T-graphene, net-graphene, and biphenylene for the detection of toxic molecules of NO and NO2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小民工应助晚安采纳,获得50
刚刚
木木完成签到,获得积分10
刚刚
1秒前
1秒前
晨安完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
爆米花应助特兰克斯采纳,获得10
3秒前
4秒前
5秒前
5秒前
6秒前
葛辉辉发布了新的文献求助10
6秒前
6秒前
共享精神应助baobaonaixi采纳,获得10
6秒前
半颗橙子发布了新的文献求助10
6秒前
7秒前
shimmery完成签到,获得积分10
8秒前
咔咔完成签到 ,获得积分20
8秒前
superworm1发布了新的文献求助10
8秒前
8秒前
hy发布了新的文献求助10
8秒前
舒心赛凤完成签到,获得积分10
8秒前
菠菜菜str完成签到,获得积分10
10秒前
悟空发布了新的文献求助10
10秒前
优雅山柏发布了新的文献求助10
10秒前
10秒前
junc发布了新的文献求助20
10秒前
memory发布了新的文献求助10
10秒前
罗曼长情雪兰完成签到,获得积分10
11秒前
酷炫板凳发布了新的文献求助10
11秒前
Sue发布了新的文献求助10
11秒前
12秒前
张先森完成签到,获得积分10
12秒前
Orange应助饭小心采纳,获得10
12秒前
jason完成签到,获得积分10
12秒前
12秒前
12秒前
糖糖完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762