Masked autoencoders with handcrafted feature predictions: Transformer for weakly supervised esophageal cancer classification

计算机科学 人工智能 食管癌 变压器 模式识别(心理学) 特征(语言学) 医学 癌症 内科学 工程类 语言学 电气工程 哲学 电压
作者
Yunhao Bai,Wenqi Li,Jianpeng An,Lili Xia,Huazhen Chen,Gang Zhao,Zhongke Gao
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:244: 107936-107936 被引量:4
标识
DOI:10.1016/j.cmpb.2023.107936
摘要

Esophageal cancer is a serious disease with a high prevalence in Eastern Asia. Histopathology tissue analysis stands as the gold standard in diagnosing esophageal cancer. In recent years, there has been a shift towards digitizing histopathological images into whole slide images (WSIs), progressively integrating them into cancer diagnostics. However, the gigapixel sizes of WSIs present significant storage and processing challenges, and they often lack localized annotations. To address this issue, multi-instance learning (MIL) has been introduced for WSI classification, utilizing weakly supervised learning for diagnosis analysis. By applying the principles of MIL to WSI analysis, it is possible to reduce the workload of pathologists by facilitating the generation of localized annotations. Nevertheless, the approach's effectiveness is hindered by the traditional simple aggregation operation and the domain shift resulting from the prevalent use of convolutional feature extractors pretrained on ImageNet. We propose a MIL-based framework for WSI analysis and cancer classification. Concurrently, we introduce employing self-supervised learning, which obviates the need for manual annotation and demonstrates versatility in various tasks, to pretrain feature extractors. This method enhances the extraction of representative features from esophageal WSI for MIL, ensuring more robust and accurate performance. We build a comprehensive dataset of whole esophageal slide images and conduct extensive experiments utilizing this dataset. The performance on our dataset demonstrates the efficiency of our proposed MIL framework and the pretraining process, with our framework outperforming existing methods, achieving an accuracy of 93.07% and AUC (area under the curve) of 95.31%. This work proposes an effective MIL method to classify WSI of esophageal cancer. The promising results indicate that our cancer classification framework holds great potential in promoting the automatic whole esophageal slide image analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
lilili6666发布了新的文献求助10
刚刚
1秒前
2秒前
planet完成签到,获得积分10
2秒前
嘞是举仔应助Lignin采纳,获得20
2秒前
3秒前
星星在酿酒完成签到,获得积分10
3秒前
4秒前
彩虹小马发布了新的文献求助10
4秒前
4秒前
英俊的铭应助证明采纳,获得10
4秒前
滴答滴答滴完成签到,获得积分10
5秒前
世界完成签到,获得积分10
5秒前
5秒前
李健的小迷弟应助洒脱采纳,获得10
5秒前
6秒前
CipherSage应助一只兔子采纳,获得10
6秒前
Judy发布了新的文献求助10
6秒前
6秒前
爆米花应助dalin采纳,获得10
7秒前
7秒前
时生发布了新的文献求助10
7秒前
8秒前
WWW发布了新的文献求助10
8秒前
自信彩虹完成签到 ,获得积分10
9秒前
丘比特应助元谷雪采纳,获得10
9秒前
忧虑的靖巧完成签到 ,获得积分10
10秒前
卓卓卓卓完成签到,获得积分20
11秒前
12秒前
shencheng完成签到,获得积分10
12秒前
12秒前
12秒前
qiii发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
风清扬发布了新的文献求助10
16秒前
情怀应助负责的方盒采纳,获得10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233