Masked autoencoders with handcrafted feature predictions: Transformer for weakly supervised esophageal cancer classification

计算机科学 人工智能 食管癌 变压器 模式识别(心理学) 特征(语言学) 医学 癌症 内科学 工程类 语言学 电气工程 哲学 电压
作者
Yunhao Bai,Wenqi Li,Jianpeng An,Lili Xia,Huazhen Chen,Gang Zhao,Zhongke Gao
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:244: 107936-107936 被引量:4
标识
DOI:10.1016/j.cmpb.2023.107936
摘要

Esophageal cancer is a serious disease with a high prevalence in Eastern Asia. Histopathology tissue analysis stands as the gold standard in diagnosing esophageal cancer. In recent years, there has been a shift towards digitizing histopathological images into whole slide images (WSIs), progressively integrating them into cancer diagnostics. However, the gigapixel sizes of WSIs present significant storage and processing challenges, and they often lack localized annotations. To address this issue, multi-instance learning (MIL) has been introduced for WSI classification, utilizing weakly supervised learning for diagnosis analysis. By applying the principles of MIL to WSI analysis, it is possible to reduce the workload of pathologists by facilitating the generation of localized annotations. Nevertheless, the approach's effectiveness is hindered by the traditional simple aggregation operation and the domain shift resulting from the prevalent use of convolutional feature extractors pretrained on ImageNet. We propose a MIL-based framework for WSI analysis and cancer classification. Concurrently, we introduce employing self-supervised learning, which obviates the need for manual annotation and demonstrates versatility in various tasks, to pretrain feature extractors. This method enhances the extraction of representative features from esophageal WSI for MIL, ensuring more robust and accurate performance. We build a comprehensive dataset of whole esophageal slide images and conduct extensive experiments utilizing this dataset. The performance on our dataset demonstrates the efficiency of our proposed MIL framework and the pretraining process, with our framework outperforming existing methods, achieving an accuracy of 93.07% and AUC (area under the curve) of 95.31%. This work proposes an effective MIL method to classify WSI of esophageal cancer. The promising results indicate that our cancer classification framework holds great potential in promoting the automatic whole esophageal slide image analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
边缘选手发布了新的文献求助10
刚刚
时雨完成签到,获得积分10
刚刚
JamesPei应助杨羕采纳,获得10
刚刚
刚刚
爱听歌的大地完成签到 ,获得积分10
1秒前
1秒前
naki完成签到,获得积分10
1秒前
hismeng发布了新的文献求助20
1秒前
清新王老吉完成签到,获得积分10
1秒前
橙陈陈完成签到,获得积分10
1秒前
2秒前
孤单不如流浪完成签到,获得积分10
2秒前
牧水之完成签到 ,获得积分10
3秒前
杨颖完成签到,获得积分10
3秒前
柳贯一发布了新的文献求助30
3秒前
God完成签到,获得积分10
4秒前
香蕉觅云应助现实的一天采纳,获得10
4秒前
4秒前
山月系晚星完成签到,获得积分10
5秒前
花火易逝发布了新的文献求助10
5秒前
茉行完成签到,获得积分10
5秒前
5秒前
6秒前
关于我发布了新的文献求助10
6秒前
平凡完成签到,获得积分10
6秒前
魏你大爷完成签到,获得积分10
6秒前
莴苣完成签到,获得积分10
7秒前
wxf完成签到,获得积分10
7秒前
7秒前
过时的沛槐完成签到,获得积分10
7秒前
7秒前
科研通AI6应助碧琴采纳,获得10
7秒前
分析完成签到 ,获得积分10
8秒前
生活散文发布了新的文献求助10
8秒前
8秒前
8秒前
陈圈圈完成签到,获得积分10
8秒前
Orange应助研友_LBorkn采纳,获得10
8秒前
炙热笑旋完成签到,获得积分10
9秒前
田様应助ding采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977