Masked Autoencoders with handcrafted feature predictions: Transformer for weakly supervised esophageal cancer classification

计算机科学 人工智能 深度学习 工作量 特征提取 模式识别(心理学) 特征(语言学) 监督学习 机器学习 过程(计算) 注释 人工神经网络 哲学 语言学 操作系统
作者
Yunhao Bai,Wenqi Li,Jianpeng An,Lili Xia,Huazhen Chen,Gang Zhao,Zhong-Ke Gao
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:: 107936-107936
标识
DOI:10.1016/j.cmpb.2023.107936
摘要

Esophageal cancer is a serious disease with a high prevalence in Eastern Asia. Histopathology tissue analysis stands as the gold standard in diagnosing esophageal cancer. In recent years, there has been a shift towards digitizing histopathological images into whole slide images (WSIs), progressively integrating them into cancer diagnostics. However, the gigapixel sizes of WSIs present significant storage and processing challenges, and they often lack localized annotations. To address this issue, multi-instance learning (MIL) has been introduced for WSI classification, utilizing weakly supervised learning for diagnosis analysis. By applying the principles of MIL to WSI analysis, it is possible to reduce the workload of pathologists by facilitating the generation of localized annotations. Nevertheless, the approach's effectiveness is hindered by the traditional simple aggregation operation and the domain shift resulting from the prevalent use of convolutional feature extractors pretrained on ImageNet. We propose a MIL-based framework for WSI analysis and cancer classification. Concurrently, we introduce employing self-supervised learning, which obviates the need for manual annotation and demonstrates versatility in various tasks, to pretrain feature extractors. This method enhances the extraction of representative features from esophageal WSI for MIL, ensuring more robust and accurate performance. We build a comprehensive dataset of whole esophageal slide images and conduct extensive experiments utilizing this dataset. The performance on our dataset demonstrates the efficiency of our proposed MIL framework and the pretraining process, with our framework outperforming existing methods, achieving an accuracy of 93.07% and AUC (area under the curve) of 95.31%. This work proposes an effective MIL method to classify WSI of esophageal cancer. The promising results indicate that our cancer classification framework holds great potential in promoting the automatic whole esophageal slide image analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
脑洞疼应助阳阳采纳,获得10
6秒前
专注秋尽发布了新的文献求助10
7秒前
9秒前
默默的棒棒糖完成签到 ,获得积分10
11秒前
11秒前
SONG关注了科研通微信公众号
11秒前
12秒前
ding应助呆头采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
sutharsons应助科研通管家采纳,获得30
12秒前
axin应助科研通管家采纳,获得10
12秒前
terence应助科研通管家采纳,获得30
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
sutharsons应助科研通管家采纳,获得30
12秒前
852应助科研通管家采纳,获得10
12秒前
hh应助科研通管家采纳,获得10
12秒前
sun发布了新的文献求助10
13秒前
13秒前
zhu完成签到,获得积分10
13秒前
酷波er应助缚大哥采纳,获得10
14秒前
李健应助明理雨筠采纳,获得10
14秒前
wang发布了新的文献求助10
16秒前
木头人给step_stone的求助进行了留言
16秒前
魏伯安完成签到,获得积分10
17秒前
朴素尔岚发布了新的文献求助10
18秒前
科研通AI5应助nextconnie采纳,获得10
18秒前
务实的犀牛完成签到,获得积分10
19秒前
19秒前
Blue_Pig发布了新的文献求助10
19秒前
20秒前
科研通AI2S应助橙子fy16_采纳,获得10
21秒前
LGJ完成签到,获得积分10
21秒前
wang完成签到,获得积分10
23秒前
24秒前
25秒前
脑洞疼应助Blue_Pig采纳,获得10
27秒前
28秒前
Akim应助危机的尔蝶采纳,获得10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849