已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Masked autoencoders with handcrafted feature predictions: Transformer for weakly supervised esophageal cancer classification

计算机科学 人工智能 食管癌 变压器 模式识别(心理学) 特征(语言学) 医学 癌症 内科学 工程类 语言学 电气工程 哲学 电压
作者
Yunhao Bai,Wenqi Li,Jianpeng An,Lili Xia,Huazhen Chen,Gang Zhao,Zhongke Gao
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:244: 107936-107936 被引量:4
标识
DOI:10.1016/j.cmpb.2023.107936
摘要

Esophageal cancer is a serious disease with a high prevalence in Eastern Asia. Histopathology tissue analysis stands as the gold standard in diagnosing esophageal cancer. In recent years, there has been a shift towards digitizing histopathological images into whole slide images (WSIs), progressively integrating them into cancer diagnostics. However, the gigapixel sizes of WSIs present significant storage and processing challenges, and they often lack localized annotations. To address this issue, multi-instance learning (MIL) has been introduced for WSI classification, utilizing weakly supervised learning for diagnosis analysis. By applying the principles of MIL to WSI analysis, it is possible to reduce the workload of pathologists by facilitating the generation of localized annotations. Nevertheless, the approach's effectiveness is hindered by the traditional simple aggregation operation and the domain shift resulting from the prevalent use of convolutional feature extractors pretrained on ImageNet. We propose a MIL-based framework for WSI analysis and cancer classification. Concurrently, we introduce employing self-supervised learning, which obviates the need for manual annotation and demonstrates versatility in various tasks, to pretrain feature extractors. This method enhances the extraction of representative features from esophageal WSI for MIL, ensuring more robust and accurate performance. We build a comprehensive dataset of whole esophageal slide images and conduct extensive experiments utilizing this dataset. The performance on our dataset demonstrates the efficiency of our proposed MIL framework and the pretraining process, with our framework outperforming existing methods, achieving an accuracy of 93.07% and AUC (area under the curve) of 95.31%. This work proposes an effective MIL method to classify WSI of esophageal cancer. The promising results indicate that our cancer classification framework holds great potential in promoting the automatic whole esophageal slide image analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
平常天与发布了新的文献求助10
3秒前
Leebc发布了新的文献求助10
4秒前
JIN完成签到,获得积分20
7秒前
向秋完成签到,获得积分10
8秒前
sj发布了新的文献求助20
11秒前
12秒前
许三问完成签到 ,获得积分0
13秒前
13秒前
卡卡完成签到,获得积分10
13秒前
爱听歌的亦玉完成签到,获得积分10
13秒前
Orange应助JIN采纳,获得10
14秒前
龙骑士25完成签到 ,获得积分10
14秒前
17秒前
向秋发布了新的文献求助10
17秒前
victorchen完成签到,获得积分10
18秒前
帅气的Bond发布了新的文献求助10
19秒前
执着冬亦发布了新的文献求助10
20秒前
科目三应助grass采纳,获得10
20秒前
兴奋的若菱完成签到 ,获得积分10
20秒前
噜啦啦完成签到 ,获得积分10
21秒前
玩命的雁丝完成签到 ,获得积分10
22秒前
25秒前
滴嘟滴嘟完成签到 ,获得积分10
25秒前
呵呵哒发布了新的文献求助10
27秒前
Sherry完成签到 ,获得积分10
28秒前
GGbond完成签到,获得积分20
28秒前
在水一方应助平常天与采纳,获得10
28秒前
壮观的海豚完成签到 ,获得积分10
29秒前
sunxxx完成签到 ,获得积分10
30秒前
GGbond发布了新的文献求助10
31秒前
TYW完成签到,获得积分10
32秒前
Ava应助sj采纳,获得10
33秒前
33秒前
???完成签到 ,获得积分10
34秒前
xyj完成签到,获得积分20
34秒前
grass完成签到,获得积分10
36秒前
半颗完成签到 ,获得积分10
37秒前
在水一方应助GGbond采纳,获得10
38秒前
执着冬亦完成签到,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197756
求助须知:如何正确求助?哪些是违规求助? 4378976
关于积分的说明 13637277
捐赠科研通 4234779
什么是DOI,文献DOI怎么找? 2322990
邀请新用户注册赠送积分活动 1321064
关于科研通互助平台的介绍 1271838