已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Masked Autoencoders with handcrafted feature predictions: Transformer for weakly supervised esophageal cancer classification

计算机科学 人工智能 深度学习 工作量 特征提取 模式识别(心理学) 特征(语言学) 监督学习 机器学习 过程(计算) 注释 人工神经网络 语言学 操作系统 哲学
作者
Yunhao Bai,Wenqi Li,Jianpeng An,Lili Xia,Huazhen Chen,Gang Zhao,Zhong-Ke Gao
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:: 107936-107936
标识
DOI:10.1016/j.cmpb.2023.107936
摘要

Esophageal cancer is a serious disease with a high prevalence in Eastern Asia. Histopathology tissue analysis stands as the gold standard in diagnosing esophageal cancer. In recent years, there has been a shift towards digitizing histopathological images into whole slide images (WSIs), progressively integrating them into cancer diagnostics. However, the gigapixel sizes of WSIs present significant storage and processing challenges, and they often lack localized annotations. To address this issue, multi-instance learning (MIL) has been introduced for WSI classification, utilizing weakly supervised learning for diagnosis analysis. By applying the principles of MIL to WSI analysis, it is possible to reduce the workload of pathologists by facilitating the generation of localized annotations. Nevertheless, the approach's effectiveness is hindered by the traditional simple aggregation operation and the domain shift resulting from the prevalent use of convolutional feature extractors pretrained on ImageNet. We propose a MIL-based framework for WSI analysis and cancer classification. Concurrently, we introduce employing self-supervised learning, which obviates the need for manual annotation and demonstrates versatility in various tasks, to pretrain feature extractors. This method enhances the extraction of representative features from esophageal WSI for MIL, ensuring more robust and accurate performance. We build a comprehensive dataset of whole esophageal slide images and conduct extensive experiments utilizing this dataset. The performance on our dataset demonstrates the efficiency of our proposed MIL framework and the pretraining process, with our framework outperforming existing methods, achieving an accuracy of 93.07% and AUC (area under the curve) of 95.31%. This work proposes an effective MIL method to classify WSI of esophageal cancer. The promising results indicate that our cancer classification framework holds great potential in promoting the automatic whole esophageal slide image analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
思源应助高挑的梦芝采纳,获得10
6秒前
沉默白猫完成签到 ,获得积分10
7秒前
科研通AI2S应助火星上念梦采纳,获得10
7秒前
车鹭洋发布了新的文献求助10
7秒前
TheGala完成签到,获得积分10
8秒前
三岁完成签到 ,获得积分10
10秒前
cambridge完成签到,获得积分10
11秒前
11秒前
研友_VZG7GZ应助健壮的芹菜采纳,获得30
11秒前
a61完成签到,获得积分10
12秒前
sev7n520发布了新的文献求助10
17秒前
科研通AI5应助火星上念梦采纳,获得10
18秒前
科研通AI6应助贪玩的德天采纳,获得10
23秒前
Menand完成签到,获得积分10
24秒前
24秒前
QQ完成签到 ,获得积分10
24秒前
25秒前
蝴蝶完成签到 ,获得积分10
26秒前
无花果应助任性的皮皮虾采纳,获得10
26秒前
完美世界应助阿洁采纳,获得10
29秒前
33秒前
35秒前
37秒前
阿洁发布了新的文献求助10
39秒前
迅速的幻雪完成签到 ,获得积分10
40秒前
冷酷哈密瓜完成签到,获得积分10
41秒前
优秀棒棒糖完成签到 ,获得积分10
42秒前
jeff完成签到,获得积分10
42秒前
42秒前
010826完成签到,获得积分10
43秒前
阿洁完成签到,获得积分10
44秒前
SciKid524完成签到 ,获得积分10
44秒前
46秒前
葱葱完成签到,获得积分10
49秒前
lhx完成签到,获得积分10
50秒前
传奇3应助王小杰采纳,获得10
51秒前
酷酷忆安完成签到,获得积分10
53秒前
yuqinghui98完成签到 ,获得积分20
54秒前
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610291
求助须知:如何正确求助?哪些是违规求助? 4016305
关于积分的说明 12434932
捐赠科研通 3697878
什么是DOI,文献DOI怎么找? 2039077
邀请新用户注册赠送积分活动 1071968
科研通“疑难数据库(出版商)”最低求助积分说明 955614