Masked Autoencoders with handcrafted feature predictions: Transformer for weakly supervised esophageal cancer classification

计算机科学 人工智能 深度学习 工作量 特征提取 模式识别(心理学) 特征(语言学) 监督学习 机器学习 过程(计算) 注释 人工神经网络 哲学 语言学 操作系统
作者
Yunhao Bai,Wenqi Li,Jianpeng An,Lili Xia,Huazhen Chen,Gang Zhao,Zhong-Ke Gao
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:: 107936-107936
标识
DOI:10.1016/j.cmpb.2023.107936
摘要

Esophageal cancer is a serious disease with a high prevalence in Eastern Asia. Histopathology tissue analysis stands as the gold standard in diagnosing esophageal cancer. In recent years, there has been a shift towards digitizing histopathological images into whole slide images (WSIs), progressively integrating them into cancer diagnostics. However, the gigapixel sizes of WSIs present significant storage and processing challenges, and they often lack localized annotations. To address this issue, multi-instance learning (MIL) has been introduced for WSI classification, utilizing weakly supervised learning for diagnosis analysis. By applying the principles of MIL to WSI analysis, it is possible to reduce the workload of pathologists by facilitating the generation of localized annotations. Nevertheless, the approach's effectiveness is hindered by the traditional simple aggregation operation and the domain shift resulting from the prevalent use of convolutional feature extractors pretrained on ImageNet. We propose a MIL-based framework for WSI analysis and cancer classification. Concurrently, we introduce employing self-supervised learning, which obviates the need for manual annotation and demonstrates versatility in various tasks, to pretrain feature extractors. This method enhances the extraction of representative features from esophageal WSI for MIL, ensuring more robust and accurate performance. We build a comprehensive dataset of whole esophageal slide images and conduct extensive experiments utilizing this dataset. The performance on our dataset demonstrates the efficiency of our proposed MIL framework and the pretraining process, with our framework outperforming existing methods, achieving an accuracy of 93.07% and AUC (area under the curve) of 95.31%. This work proposes an effective MIL method to classify WSI of esophageal cancer. The promising results indicate that our cancer classification framework holds great potential in promoting the automatic whole esophageal slide image analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林夏发布了新的文献求助200
1秒前
隐形飞雪完成签到,获得积分10
4秒前
hqn完成签到 ,获得积分10
6秒前
7秒前
我爱Chem完成签到 ,获得积分10
10秒前
pacify完成签到 ,获得积分10
13秒前
stacy完成签到 ,获得积分10
14秒前
若枫完成签到,获得积分10
16秒前
HCLonely应助求助采纳,获得10
17秒前
lbh完成签到,获得积分10
22秒前
领导范儿应助MYY采纳,获得10
24秒前
mineave完成签到 ,获得积分10
25秒前
yy爱科研完成签到,获得积分10
26秒前
李崋壹完成签到 ,获得积分10
29秒前
她的城完成签到,获得积分0
31秒前
sophia完成签到 ,获得积分10
32秒前
江左侠客完成签到,获得积分10
33秒前
亚迪完成签到,获得积分10
33秒前
35秒前
35秒前
hutian完成签到,获得积分10
36秒前
Ray完成签到,获得积分0
38秒前
lazyg5403完成签到,获得积分10
39秒前
啦啦累完成签到,获得积分10
41秒前
共享精神应助dada采纳,获得10
41秒前
光亮的自行车完成签到 ,获得积分10
43秒前
踏实的无敌完成签到,获得积分10
45秒前
Tysonqu完成签到,获得积分10
47秒前
Hysen_L完成签到,获得积分10
48秒前
李凤凤完成签到 ,获得积分10
48秒前
嘿嘿完成签到 ,获得积分10
50秒前
you完成签到,获得积分10
51秒前
wxxz完成签到,获得积分10
51秒前
Alone离殇完成签到 ,获得积分10
52秒前
HYCT完成签到 ,获得积分10
52秒前
故意的问安完成签到 ,获得积分10
52秒前
hml123完成签到,获得积分10
56秒前
壮观傲霜完成签到 ,获得积分10
56秒前
高高的巨人完成签到 ,获得积分10
58秒前
君君完成签到,获得积分10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3298791
求助须知:如何正确求助?哪些是违规求助? 2933792
关于积分的说明 8464898
捐赠科研通 2606972
什么是DOI,文献DOI怎么找? 1423514
科研通“疑难数据库(出版商)”最低求助积分说明 661594
邀请新用户注册赠送积分活动 645206