Masked autoencoders with handcrafted feature predictions: Transformer for weakly supervised esophageal cancer classification

计算机科学 人工智能 食管癌 变压器 模式识别(心理学) 特征(语言学) 医学 癌症 内科学 工程类 语言学 电气工程 哲学 电压
作者
Yunhao Bai,Wenqi Li,Jianpeng An,Lili Xia,Huazhen Chen,Gang Zhao,Zhongke Gao
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:244: 107936-107936 被引量:4
标识
DOI:10.1016/j.cmpb.2023.107936
摘要

Esophageal cancer is a serious disease with a high prevalence in Eastern Asia. Histopathology tissue analysis stands as the gold standard in diagnosing esophageal cancer. In recent years, there has been a shift towards digitizing histopathological images into whole slide images (WSIs), progressively integrating them into cancer diagnostics. However, the gigapixel sizes of WSIs present significant storage and processing challenges, and they often lack localized annotations. To address this issue, multi-instance learning (MIL) has been introduced for WSI classification, utilizing weakly supervised learning for diagnosis analysis. By applying the principles of MIL to WSI analysis, it is possible to reduce the workload of pathologists by facilitating the generation of localized annotations. Nevertheless, the approach's effectiveness is hindered by the traditional simple aggregation operation and the domain shift resulting from the prevalent use of convolutional feature extractors pretrained on ImageNet. We propose a MIL-based framework for WSI analysis and cancer classification. Concurrently, we introduce employing self-supervised learning, which obviates the need for manual annotation and demonstrates versatility in various tasks, to pretrain feature extractors. This method enhances the extraction of representative features from esophageal WSI for MIL, ensuring more robust and accurate performance. We build a comprehensive dataset of whole esophageal slide images and conduct extensive experiments utilizing this dataset. The performance on our dataset demonstrates the efficiency of our proposed MIL framework and the pretraining process, with our framework outperforming existing methods, achieving an accuracy of 93.07% and AUC (area under the curve) of 95.31%. This work proposes an effective MIL method to classify WSI of esophageal cancer. The promising results indicate that our cancer classification framework holds great potential in promoting the automatic whole esophageal slide image analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一颗菠菜完成签到,获得积分10
1秒前
Elena完成签到 ,获得积分10
1秒前
1秒前
demon应助阮楷瑞采纳,获得10
2秒前
秀丽的青发布了新的文献求助10
3秒前
R_joy完成签到 ,获得积分10
3秒前
爱喝冰可乐完成签到,获得积分10
3秒前
4秒前
DJ关闭了DJ文献求助
4秒前
EKo完成签到,获得积分10
4秒前
灵均完成签到 ,获得积分10
4秒前
4秒前
sun关闭了sun文献求助
5秒前
量子星尘发布了新的文献求助10
5秒前
青松给cha的求助进行了留言
5秒前
科研通AI2S应助山茱萸采纳,获得30
5秒前
6秒前
reform01发布了新的文献求助10
7秒前
7秒前
安静的ky完成签到,获得积分10
7秒前
8秒前
8秒前
xin完成签到,获得积分10
8秒前
dakjdia应助喵喵采纳,获得10
8秒前
9秒前
LuxuryLuo发布了新的文献求助10
9秒前
李爱国应助Percy采纳,获得10
9秒前
9秒前
刘一帆完成签到 ,获得积分10
10秒前
10秒前
史萌发布了新的文献求助10
10秒前
科研通AI6.1应助研友_n0GBAL采纳,获得10
11秒前
11秒前
bkagyin应助赵景豪采纳,获得30
11秒前
桐桐应助liminliminlimin采纳,获得10
11秒前
mofeik发布了新的文献求助10
11秒前
烟花应助郑zz采纳,获得10
11秒前
sxp1031发布了新的文献求助10
12秒前
qingli应助独特的追命采纳,获得40
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5751577
求助须知:如何正确求助?哪些是违规求助? 5469081
关于积分的说明 15370428
捐赠科研通 4890701
什么是DOI,文献DOI怎么找? 2629836
邀请新用户注册赠送积分活动 1578067
关于科研通互助平台的介绍 1534214