Responsible innovation and corporate sustainability performance: A structural equation modeling‐neural network approach

持续性 结构方程建模 人气 业务 竞争优势 战略管理 资源(消歧) 营销 产业组织 知识管理 计算机科学 心理学 社会心理学 生态学 计算机网络 机器学习 生物
作者
Khalid Rasheed Memon,Say Keat Ooi,Heesup Han
出处
期刊:Business Strategy and The Environment [Wiley]
卷期号:33 (4): 2712-2730 被引量:3
标识
DOI:10.1002/bse.3627
摘要

Abstract Technological innovations may bring unintended consequences despite their potential usefulness. Responsible innovation (RI) has gained increasing popularity in high‐tech nations as a means to mitigate potentially disruptive technological developments. Unfortunately, existing RI research has not sufficiently elucidated the sustainability performance of firms, leading to ambiguous theoretical underpinnings, relationships, and practical applicability. This study aims to address these concerns and provide directions for future research on RI. Based on the resource‐based view, the research introduces RI as a distinctive competency of a firm to investigate the mechanisms driving sustainability performance, measured in three areas: financial, social, and environmental. The study presents the antecedents of RI as a driving force that can enable businesses to gain a sustainable competitive advantage (SCA) and improve sustainability performance. Data were collected from 190 innovative manufacturing firms in Malaysia. First, structural equation modeling (SEM) was utilized to investigate the antecedents that significantly influence RI. In the second phase, artificial neural network (ANN) analysis was employed to rank the significant predictors identified through SEM. Furthermore, the RI dimensions that lead to SCA and sustainability performance were also ranked using ANN, offering practical strategic business directions for managers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助西瓜采纳,获得10
刚刚
KVBVB完成签到,获得积分10
1秒前
一心难求完成签到,获得积分10
1秒前
共享精神应助udye采纳,获得10
2秒前
丘比特应助udye采纳,获得10
2秒前
今后应助udye采纳,获得10
2秒前
善学以致用应助udye采纳,获得10
2秒前
Jasper应助udye采纳,获得10
2秒前
情怀应助udye采纳,获得10
2秒前
华仔应助udye采纳,获得10
3秒前
酷波er应助udye采纳,获得10
3秒前
无花果应助udye采纳,获得10
3秒前
隐形曼青应助udye采纳,获得10
3秒前
3秒前
隐形曼青应助hhhhh采纳,获得10
3秒前
ytx发布了新的文献求助10
4秒前
外向一一发布了新的文献求助10
4秒前
与你无关完成签到,获得积分10
4秒前
辉哥完成签到,获得积分10
5秒前
领导范儿应助yi蔚采纳,获得10
5秒前
7秒前
7秒前
7秒前
8秒前
山花浪漫应助ling22采纳,获得10
8秒前
zoelir完成签到,获得积分10
8秒前
单薄的夏槐完成签到,获得积分20
8秒前
星芋啵啵完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
9秒前
爆米花应助墨冉采纳,获得10
10秒前
端庄断秋发布了新的文献求助10
10秒前
10秒前
王微发布了新的文献求助10
10秒前
所所应助信步采纳,获得10
10秒前
10秒前
Yolo完成签到,获得积分10
11秒前
骆欣怡发布了新的文献求助10
11秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3731957
求助须知:如何正确求助?哪些是违规求助? 3276317
关于积分的说明 9996422
捐赠科研通 2991854
什么是DOI,文献DOI怎么找? 1641806
邀请新用户注册赠送积分活动 780013
科研通“疑难数据库(出版商)”最低求助积分说明 748649