YOLOPX: Anchor-free multi-task learning network for panoptic driving perception

计算机科学 任务(项目管理) 人工智能 目标检测 推论 分割 可扩展性 机器学习 感知 计算机视觉 人机交互 工程类 数据库 生物 神经科学 系统工程
作者
Jiao Zhan,Yarong Luo,Chi Guo,Yejun Wu,Jiawei Meng,Jingnan Liu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:148: 110152-110152 被引量:14
标识
DOI:10.1016/j.patcog.2023.110152
摘要

Panoptic driving perception encompasses traffic object detection, drivable area segmentation, and lane detection. Existing methods typically utilize anchor-based multi-task learning networks to complete this task. While these methods yield promising results, they suffer from the inherent limitations of anchor-based detectors. In this paper, we propose YOLOPX, a simple and efficient anchor-free multi-task learning network for panoptic driving perception. To the best of our knowledge, this is the first work to employ the anchor-free detection head in panoptic driving perception. This anchor-free manner simplifies training by avoiding anchor-related heuristic tuning, and enhances the adaptability and scalability of our multi-task learning network. In addition, YOLOPX incorporates a novel lane detection head that combines multi-scale high-resolution features and long-distance contextual dependencies to improve segmentation performance. Beyond structure optimization, we propose optimization improvements to enhance network training, enabling our multi-task learning network to achieve optimal performance through simple end-to-end training. Experimental results on the challenging BDD100K dataset demonstrate the state-of-the-art (SOTA) performance of YOLOPX: it achieves 93.7% recall and 83.3% mAP50 on traffic object detection, 93.2% mIoU on drivable area segmentation, and 88.6% accuracy and 27.2% IoU on lane detection. Moreover, YOLOPX has faster inference speed compared to the lightweight network YOLOP. Consequently, YOLOPX is a powerful solution for panoptic driving perception problems. The code is available at https://github.com/jiaoZ7688/YOLOPX.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利的傲之完成签到 ,获得积分10
刚刚
ss_hHe完成签到,获得积分10
1秒前
英姑应助沉默采纳,获得10
1秒前
1秒前
实验好难应助YAL采纳,获得10
1秒前
2秒前
3秒前
4秒前
自信鞯发布了新的文献求助10
4秒前
jiang完成签到,获得积分10
5秒前
orixero应助Q11采纳,获得10
5秒前
HONG给HONG的求助进行了留言
5秒前
阳光襄完成签到,获得积分20
5秒前
机灵的涔完成签到,获得积分10
6秒前
biancaliu发布了新的文献求助10
6秒前
佳仔完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
日光下发布了新的文献求助30
7秒前
科研通AI5应助希夷采纳,获得30
7秒前
8秒前
虚幻的尔丝完成签到 ,获得积分10
8秒前
领导范儿应助贰陆采纳,获得10
9秒前
jiang发布了新的文献求助10
9秒前
10秒前
牢刺完成签到,获得积分10
10秒前
11秒前
待放光的吖啶酯完成签到,获得积分10
11秒前
沙青亦发布了新的文献求助10
12秒前
12秒前
杨青月发布了新的文献求助10
12秒前
13秒前
13秒前
kk发布了新的文献求助10
13秒前
大个应助Seldomyg采纳,获得10
14秒前
14秒前
15秒前
keikei完成签到,获得积分10
15秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553933
求助须知:如何正确求助?哪些是违规求助? 3129728
关于积分的说明 9384042
捐赠科研通 2828848
什么是DOI,文献DOI怎么找? 1555246
邀请新用户注册赠送积分活动 725940
科研通“疑难数据库(出版商)”最低求助积分说明 715331