材料科学
电介质
非线性系统
复合材料
光电子学
纳米技术
统计物理学
量子力学
物理
作者
Yong‐Jyun Wang,Hung‐Chi Lai,Yuang Chen,Rong Huang,Ti Hsin,Heng‐Jui Liu,Ruixue Zhu,Peng Gao,Cong Li,Pu Yu,Yi‐Chun Chen,Jiangyu Li,Yi‐Cheng Chen,Jien‐Wei Yeh,Ying‐Hao Chu
标识
DOI:10.1002/adma.202304128
摘要
A high configurational entropy, achieved through a proper design of compositions, can minimize the Gibbs free energy and stabilize the quasi-equilibrium phases in a solid-solution form. This leads to the development of high-entropy materials with unique structural characteristics and excellent performance, which otherwise could not be achieved through conventional pathways. This work develops a high-entropy nonlinear dielectric system, based on the expansion of lead magnesium niobate-lead titanate. A dense and uniform distribution of nano-polar regions is observed in the samples owing to the addition of Ba, Hf, and Zr ions, which lead to enhanced performance of nonlinear dielectrics. The fact that no structural phase transformation is detected up to 250 °C, and no noticeable change or a steep drop in structural and electrical characteristics is observed at high temperatures suggests a robust thermal stability of the dielectric systems developed. With these advantages, these materials hold vast potential for applications such as dielectric energy storage, dielectric tunability, and electrocaloric effect. Thus, this work offers a new high-entropy configuration with elemental modulation, with enhanced dielectric material features.
科研通智能强力驱动
Strongly Powered by AbleSci AI