Interpolation Normalization for Contrast Domain Generalization

规范化(社会学) 计算机科学 人工智能 判别式 一般化 杠杆(统计) 机器学习 模式识别(心理学) 正规化(语言学) 数学 数学分析 社会学 人类学
作者
Mengzhu Wang,Junyang Chen,Huan Wang,Huisi Wu,Zhidan Liu,Qin Zhang
标识
DOI:10.1145/3581783.3611841
摘要

Domain generalization refers to the challenge of training a model from various source domains that can generalize well to unseen target domains. Contrastive learning is a promising solution that aims to learn domain-invariant representations by utilizing rich semantic relations among sample pairs from different domains. One simple approach is to bring positive sample pairs from different domains closer, while pushing negative pairs further apart. However, in this paper, we find that directly applying contrastive-based methods is not effective in domain generalization. To overcome this limitation, we propose to leverage a novel contrastive learning approach that promotes class-discriminative and class-balanced features from source domains. Essentially, clusters of sample representations from the same category are encouraged to cluster, while those from different categories are spread out, thus enhancing the model's generalization capability. Furthermore, most existing contrastive learning methods use batch normalization, which may prevent the model from learning domain-invariant features. Inspired by recent research on universal representations for neural networks, we propose a simple emulation of this mechanism by utilizing batch normalization layers to distinguish visual classes and formulating a way to combine them for domain generalization tasks. Our experiments demonstrate a significant improvement in classification accuracy over state-of-the-art techniques on popular domain generalization benchmarks, including Digits-DG, PACS, Office-Home and DomainNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
固的曼发布了新的文献求助10
刚刚
4秒前
科研通AI5应助zhunzhunzhun采纳,获得10
5秒前
windows完成签到,获得积分10
5秒前
贷款做科研完成签到,获得积分10
6秒前
小蘑菇应助洋子采纳,获得10
7秒前
SciGPT应助噜啦啦啦采纳,获得10
7秒前
Orange应助木木采纳,获得10
8秒前
wuming完成签到,获得积分10
8秒前
请叫我风吹麦浪应助windows采纳,获得10
9秒前
珩Roy完成签到,获得积分10
9秒前
10秒前
11秒前
打打应助小洛采纳,获得10
11秒前
12秒前
小二郎应助WaitP采纳,获得10
12秒前
12秒前
jiangqingquan完成签到 ,获得积分10
13秒前
pitto完成签到,获得积分10
15秒前
15秒前
16秒前
17秒前
栗子发布了新的文献求助10
17秒前
18秒前
十豆彡发布了新的文献求助10
18秒前
18秒前
冷板凳发布了新的文献求助10
19秒前
qqqqqqq完成签到,获得积分20
20秒前
丘比特应助Coconut采纳,获得10
20秒前
20秒前
小丸子关注了科研通微信公众号
20秒前
suliang完成签到,获得积分10
20秒前
Lucas应助第一步催化B采纳,获得10
21秒前
21秒前
LM879发布了新的文献求助10
22秒前
研友_O8W2PZ完成签到,获得积分10
22秒前
枝头的小熊猫完成签到,获得积分10
22秒前
panpanliumin完成签到,获得积分0
22秒前
23秒前
木木发布了新的文献求助10
23秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483773
求助须知:如何正确求助?哪些是违规求助? 3073002
关于积分的说明 9128881
捐赠科研通 2764596
什么是DOI,文献DOI怎么找? 1517290
邀请新用户注册赠送积分活动 701998
科研通“疑难数据库(出版商)”最低求助积分说明 700849