Improved snow ablation optimizer with heat transfer and condensation strategy for global optimization problem

数学优化 人口 冷凝 计算机科学 升华(心理学) 水准点(测量) 传热 局部最优 烧蚀 数学 机械 工程类 航空航天工程 气象学 物理 地质学 社会学 人口学 大地测量学 心理治疗师 心理学
作者
Heming Jia,Yu Feng,Di Wu,Honghua Rao,Honda Wu,Laith Abualigah
出处
期刊:Journal of Computational Design and Engineering [Oxford University Press]
卷期号:10 (6): 2177-2199 被引量:1
标识
DOI:10.1093/jcde/qwad096
摘要

Abstract The snow ablation optimizer (SAO) is a new metaheuristic algorithm proposed in April 2023. It simulates the phenomenon of snow sublimation and melting in nature and has a good optimization effect. The SAO proposes a new two-population mechanism. By introducing Brownian motion to simulate the random motion of gas molecules in space. However, as the temperature factor changes, most water molecules are converted into water vapor, which breaks the balance between exploration and exploitation, and reduces the optimization ability of the algorithm in the later stage. Especially in the face of high-dimensional problems, it is easy to fall into local optimal. In order to improve the efficiency of the algorithm, this paper proposes an improved snow ablation optimizer with heat transfer and condensation strategy (SAOHTC). Firstly, this article proposes a heat transfer strategy, which utilizes gas molecules to transfer heat from high to low temperatures and move their positions from low to high temperatures, causing individuals with lower fitness in the population to move towards individuals with higher fitness, thereby improving the optimization efficiency of the original algorithm. Secondly, a condensation strategy is proposed, which can transform water vapor into water by simulating condensation in nature, improve the deficiency of the original two-population mechanism, and improve the convergence speed. Finally, to verify the performance of SAOHTC, in this paper, two benchmark experiments of IEEE CEC2014 and IEEE CEC2017 and five engineering problems are used to test the superior performance of SAOHTC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
671完成签到,获得积分10
刚刚
1秒前
NORMCORE发布了新的文献求助10
1秒前
烟花应助章鱼哥采纳,获得30
2秒前
wings发布了新的文献求助10
2秒前
慕青应助zhzhzh采纳,获得10
2秒前
小蘑菇应助卡拉布哔布采纳,获得10
3秒前
平常毛衣发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
6秒前
科研通AI5应助炙热的朋友采纳,获得10
6秒前
NORMCORE完成签到,获得积分10
6秒前
Orange应助活力的初之采纳,获得10
7秒前
WWXWWX发布了新的文献求助10
7秒前
7秒前
8秒前
michaeleh发布了新的文献求助10
8秒前
踏实的诗筠完成签到 ,获得积分10
9秒前
寻觅完成签到,获得积分10
10秒前
10秒前
bkagyin应助轻松板栗采纳,获得10
10秒前
10秒前
10秒前
arabidopsis应助李富贵儿~采纳,获得10
11秒前
11秒前
雪山飞龙发布了新的文献求助50
11秒前
11秒前
李健应助禾牧之采纳,获得10
11秒前
Orange应助莫莫采纳,获得10
13秒前
Kaligash发布了新的文献求助20
13秒前
13秒前
在水一方应助禾几采纳,获得10
13秒前
FashionBoy应助WWXWWX采纳,获得10
13秒前
michaeleh完成签到,获得积分10
14秒前
15秒前
科研小能手完成签到 ,获得积分10
16秒前
17秒前
17秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476364
求助须知:如何正确求助?哪些是违规求助? 3068018
关于积分的说明 9106299
捐赠科研通 2759594
什么是DOI,文献DOI怎么找? 1514136
邀请新用户注册赠送积分活动 700071
科研通“疑难数据库(出版商)”最低求助积分说明 699284