已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Goaf risk prediction based on IAOA–SVM and numerical simulation: A case study

支持向量机 计算机模拟 工程类 理论(学习稳定性) 采矿工程 铜矿 算法 数据挖掘 人工智能 机器学习 计算机科学 模拟 有机化学 化学
作者
Mingliang Li,Kegang Li,Yuedong Liu,Shunchuan Wu,Qingci Qin,Rui Yue
出处
期刊:Underground Space [Elsevier]
卷期号:15: 153-175 被引量:6
标识
DOI:10.1016/j.undsp.2023.07.003
摘要

In regard to goaf risk prediction, due to the low accuracy and single prediction method, this study proposes a method that combines the improved arithmetic optimization algorithm (IAOA) – support vector machines (SVM) with GoCAD–FLAC3D numerical simulation. Thus, goaf risk is comprehensively predicted. From the perspectives of geological and engineering conditions, eight factors that affect goaf stability and 176 sets of sample data were determined. We utilized eight influencing factors such as rock mass structure, geological structure, and goaf burial depth as inputs, and the goaf risk level as the output. Moreover, an IAOA–SVM goaf risk prediction model was established. The 30 goaf areas of Yangla Copper Mine in Yunnan Province were selected as the research subject. First, the rationality of mechanical parameter values in the numerical model was verified using the parameter inversion method. Second, based on the GoCAD–FLAC3D numerical simulation method, the goaf risk analysis in Yangla Copper Mine was performed. Subsequently, using numerical simulation verification, the goaf filling effect was analyzed. Finally, the prediction results of the IAOA–SVM model were compared with that of other intelligent algorithms. The results indicate that the numerical simulation results of the GoCAD–FLAC3D model are consistent with those of IAOA–SVM and the actual results, which further verifies the effectiveness and superiority of the IAOA–SVM prediction model. Therefore, an innovative approach for goaf risk prediction is developed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助llll采纳,获得10
3秒前
菠萝鸡翅根完成签到,获得积分10
3秒前
7秒前
丘比特应助aojuan采纳,获得10
10秒前
深情安青应助andrele采纳,获得10
10秒前
11秒前
豆豆哥发布了新的文献求助10
11秒前
12秒前
科研通AI5应助xl采纳,获得10
14秒前
C胖胖发布了新的文献求助10
15秒前
CipherSage应助yy采纳,获得10
15秒前
nly完成签到,获得积分10
15秒前
16秒前
16秒前
神说应助科研通管家采纳,获得10
16秒前
shi hui应助科研通管家采纳,获得10
17秒前
上官若男应助科研通管家采纳,获得10
17秒前
李健应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
shi hui应助科研通管家采纳,获得10
17秒前
哇哈哈哈发布了新的文献求助10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
神说应助科研通管家采纳,获得80
17秒前
神说应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
18秒前
wadaxiwa应助qq采纳,获得10
23秒前
llll发布了新的文献求助10
23秒前
狂野的雅绿完成签到,获得积分10
23秒前
乐乐应助Y.B.Cao采纳,获得10
27秒前
FashionBoy应助哇哈哈哈采纳,获得10
28秒前
30秒前
喜悦发布了新的文献求助10
30秒前
31秒前
31秒前
壮观的远侵完成签到,获得积分10
33秒前
34秒前
彩色海露完成签到,获得积分10
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3590399
求助须知:如何正确求助?哪些是违规求助? 3158683
关于积分的说明 9521191
捐赠科研通 2861748
什么是DOI,文献DOI怎么找? 1572766
邀请新用户注册赠送积分活动 738110
科研通“疑难数据库(出版商)”最低求助积分说明 722676