IC-GAN: An Improved Conditional Generative Adversarial Network for RGB-to-IR image translation with applications to forest fire monitoring

计算机科学 RGB颜色模型 人工智能 深度学习 计算机视觉 图像翻译 发电机(电路理论) 翻译(生物学) 模式识别(心理学) 图像(数学) 功率(物理) 生物化学 物理 化学 量子力学 信使核糖核酸 基因
作者
Sayed Pedram Haeri Boroujeni,Abolfazl Razi
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 121962-121962 被引量:18
标识
DOI:10.1016/j.eswa.2023.121962
摘要

This paper introduces a novel Deep Learning (DL) architecture for inferring temperature information from aerial true-color RGB images by transforming them into Infrared Radiation (IR) domain. This work is motivated by a few facts. First, off-the-shelf contemporary drones are typically equipped only with regular cameras. Second, IR heat-mapping cameras are costly and heavy for payload-limited drones. Third, additional communication channels and power supply would be needed when including IR cameras. Finally, IR cameras provide lower resolution and shorter distance ranges than RGB cameras. Therefore, learning-based translation of aerial IR recordings to RGB images can be extremely useful not only for new tests but also for offline processing of the currently available forest fire datasets with RGB images. We offer an Improved Conditional-Generative Adversarial Network (IC-GAN), where matched IR images are used as a condition to guide the translation process by the generator. The U-Net-based generator is concatenated with a mapper module to transform the output into a stack of diverse color spaces with learnable parameters. To avoid the unnecessary penalization of pixel-level disparities and achieve structural similarity, we include clustering alignment to the loss function. The proposed framework is compared against several state-of-the-art methods, including U-Net, Efficient U-Net, GAN, and Conditional-GAN from both subjective (human perception) and objective evaluation perspectives. The results support our method’s efficacy, demonstrating a significant improvement of around 6% in PSNR, 15% in UQI, 9% in SSIM, and 23% in IoU metrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sadh2完成签到 ,获得积分10
2秒前
GXLong完成签到,获得积分10
2秒前
chichenglin完成签到 ,获得积分0
3秒前
久ling完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助30
16秒前
好吃的番茄芝士完成签到 ,获得积分10
26秒前
量子星尘发布了新的文献求助10
27秒前
i2stay完成签到,获得积分0
34秒前
科研通AI6.1应助wake采纳,获得10
36秒前
36秒前
村上春树的摩的完成签到 ,获得积分10
37秒前
葉鳳怡完成签到 ,获得积分10
52秒前
量子星尘发布了新的文献求助10
53秒前
LOST完成签到 ,获得积分10
54秒前
onevip完成签到,获得积分0
57秒前
11完成签到 ,获得积分10
1分钟前
1分钟前
窖藏喜之郎完成签到 ,获得积分10
1分钟前
萝卜青菜完成签到 ,获得积分10
1分钟前
潇潇完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助50
1分钟前
1分钟前
魔仙堡狸花猫完成签到 ,获得积分10
1分钟前
xiaoyi完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
好好应助科研通管家采纳,获得10
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
1分钟前
好好应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
1分钟前
上官若男应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
上官若男应助科研通管家采纳,获得10
1分钟前
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789350
求助须知:如何正确求助?哪些是违规求助? 5718543
关于积分的说明 15474497
捐赠科研通 4917193
什么是DOI,文献DOI怎么找? 2646821
邀请新用户注册赠送积分活动 1594488
关于科研通互助平台的介绍 1548966