已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

IC-GAN: An Improved Conditional Generative Adversarial Network for RGB-to-IR image translation with applications to forest fire monitoring

计算机科学 RGB颜色模型 人工智能 深度学习 计算机视觉 图像翻译 发电机(电路理论) 翻译(生物学) 模式识别(心理学) 图像(数学) 功率(物理) 信使核糖核酸 物理 基因 化学 量子力学 生物化学
作者
Sayed Pedram Haeri Boroujeni,Abolfazl Razi
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 121962-121962 被引量:18
标识
DOI:10.1016/j.eswa.2023.121962
摘要

This paper introduces a novel Deep Learning (DL) architecture for inferring temperature information from aerial true-color RGB images by transforming them into Infrared Radiation (IR) domain. This work is motivated by a few facts. First, off-the-shelf contemporary drones are typically equipped only with regular cameras. Second, IR heat-mapping cameras are costly and heavy for payload-limited drones. Third, additional communication channels and power supply would be needed when including IR cameras. Finally, IR cameras provide lower resolution and shorter distance ranges than RGB cameras. Therefore, learning-based translation of aerial IR recordings to RGB images can be extremely useful not only for new tests but also for offline processing of the currently available forest fire datasets with RGB images. We offer an Improved Conditional-Generative Adversarial Network (IC-GAN), where matched IR images are used as a condition to guide the translation process by the generator. The U-Net-based generator is concatenated with a mapper module to transform the output into a stack of diverse color spaces with learnable parameters. To avoid the unnecessary penalization of pixel-level disparities and achieve structural similarity, we include clustering alignment to the loss function. The proposed framework is compared against several state-of-the-art methods, including U-Net, Efficient U-Net, GAN, and Conditional-GAN from both subjective (human perception) and objective evaluation perspectives. The results support our method’s efficacy, demonstrating a significant improvement of around 6% in PSNR, 15% in UQI, 9% in SSIM, and 23% in IoU metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cosmosurfer完成签到,获得积分10
8秒前
zoe发布了新的文献求助10
9秒前
万能图书馆应助kktsy采纳,获得10
11秒前
可爱的函函应助橘栀采纳,获得10
14秒前
15秒前
菜根谭完成签到 ,获得积分10
17秒前
深情安青应助ah采纳,获得10
17秒前
科研通AI2S应助芜湖采纳,获得10
17秒前
19秒前
20秒前
20秒前
21秒前
孤独箴言发布了新的文献求助10
24秒前
zoe发布了新的文献求助10
25秒前
kktsy发布了新的文献求助10
25秒前
27秒前
欣慰问凝发布了新的文献求助10
27秒前
Radiant发布了新的文献求助10
32秒前
32秒前
cyanpomelo完成签到,获得积分10
33秒前
sl完成签到 ,获得积分10
37秒前
英姑应助孤独箴言采纳,获得30
42秒前
49秒前
欣慰问凝完成签到 ,获得积分10
51秒前
HarryYang完成签到 ,获得积分10
53秒前
李健应助燃烧的小火苗采纳,获得30
55秒前
桃李不言发布了新的文献求助10
55秒前
搜集达人应助琳琳采纳,获得10
56秒前
Ammr完成签到 ,获得积分10
57秒前
无极完成签到 ,获得积分10
1分钟前
涛老三完成签到 ,获得积分10
1分钟前
LLLL发布了新的文献求助10
1分钟前
1分钟前
kktsy完成签到,获得积分10
1分钟前
朴素的迎天关注了科研通微信公众号
1分钟前
doctor2023完成签到,获得积分10
1分钟前
1分钟前
1分钟前
慢慢完成签到 ,获得积分10
1分钟前
HoraDorathy发布了新的文献求助10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963148
求助须知:如何正确求助?哪些是违规求助? 3509019
关于积分的说明 11144868
捐赠科研通 3242023
什么是DOI,文献DOI怎么找? 1791708
邀请新用户注册赠送积分活动 873118
科研通“疑难数据库(出版商)”最低求助积分说明 803621