Property Prediction and Structural Feature Extraction of Polyimide Materials Based on Machine Learning

聚酰亚胺 材料科学 玻璃化转变 均方误差 波长 生物系统 相关系数 人工智能 计算机科学 复合材料 机器学习 数学 聚合物 光电子学 统计 图层(电子) 生物
作者
Han Zhang,Haoyuan Li,Hanshen Xin,Jianhua Zhang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (17): 5473-5483 被引量:4
标识
DOI:10.1021/acs.jcim.3c00326
摘要

The construction of material prediction models using machine learning algorithms can aid in the polyimide structural design and screening of materials as well as accelerate the development of new materials. There is a lack of research on predicting the optical properties of polyimide materials and the interpretation of the structural features. Here, we collected 652 polyimide molecular structures and used seven popular machine learning algorithms to predict the glass transition temperature and cut-off wavelength of polyimide materials and extract key feature information of repeating unit structures. The results showed that the root mean square error of the glass transition temperature prediction model was 33.92 °C, and the correlation coefficient was 0.861. The root mean square error of the cut-off wavelength prediction model was 17.18 nm, and the correlation coefficient was 0.837. The elasticity of the molecular structure was also found to be the key factor affecting glass transition temperature, and the presence and location of heterogeneous atoms had a significant effect on the cut-off wavelengths. Finally, eight polyimide materials were synthesized to test the accuracy of the prediction models, and the experimental characterization values agreed with the predicted values. The results would contribute to the development of polyimide structural design and materials preparation for flexible display.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
didi发布了新的文献求助30
1秒前
qzh发布了新的文献求助30
2秒前
2秒前
Heisenberg应助jinjun采纳,获得10
2秒前
SherlockJia发布了新的文献求助10
3秒前
壮观的雪卉关注了科研通微信公众号
3秒前
jiang发布了新的文献求助10
3秒前
MMM发布了新的文献求助10
3秒前
奋斗尔安应助苦瓜采纳,获得10
4秒前
hhhhhhh发布了新的文献求助10
4秒前
iiiL发布了新的文献求助30
4秒前
5秒前
5秒前
淡然发布了新的文献求助10
6秒前
欢喜的芒果完成签到,获得积分10
7秒前
上官若男应助drdouxia采纳,获得10
7秒前
小二郎应助曲夜白采纳,获得10
7秒前
Orange应助gengeng采纳,获得30
8秒前
无聊的太清完成签到,获得积分10
9秒前
10秒前
研友_VZG7GZ应助Zhong采纳,获得10
11秒前
科目三应助啾啾采纳,获得10
11秒前
iiiL完成签到,获得积分10
11秒前
feng完成签到,获得积分10
12秒前
12秒前
14秒前
qzh完成签到,获得积分20
14秒前
15秒前
溪鱼完成签到,获得积分10
16秒前
16秒前
17秒前
华仔应助张鱼小丸子采纳,获得10
17秒前
wanci应助想游泳的鹰采纳,获得10
18秒前
18秒前
贾sir完成签到,获得积分10
19秒前
Jasper应助wyx采纳,获得10
20秒前
潇z完成签到,获得积分10
20秒前
ccc发布了新的文献求助10
21秒前
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313209
求助须知:如何正确求助?哪些是违规求助? 2945574
关于积分的说明 8526168
捐赠科研通 2621359
什么是DOI,文献DOI怎么找? 1433478
科研通“疑难数据库(出版商)”最低求助积分说明 665025
邀请新用户注册赠送积分活动 650512