Self-supervised contrastive graph representation with node and graph augmentation

计算机科学 理论计算机科学 图形 折线图 空图形 电压图
作者
Haoran Duan,Cheng Xie,Bin Li,Peng Tang
出处
期刊:Neural Networks [Elsevier]
卷期号:167: 223-232 被引量:8
标识
DOI:10.1016/j.neunet.2023.08.039
摘要

Graph representation is a critical technology in the field of knowledge engineering and knowledge-based applications since most knowledge bases are represented in the graph structure. Nowadays, contrastive learning has become a prominent way for graph representation by contrasting positive-positive and positive-negative node pairs between two augmentation graphs. It has achieved new state-of-the-art in the field of self-supervised graph representation. However, existing contrastive graph representation methods mainly focus on modifying (normally removing some edges/nodes) the original graph structure to generate the augmentation graph for the contrastive. It inevitably changes the original graph structures, meaning the generated augmentation graph is no longer equivalent to the original graph. This harms the performance of the representation in many structure-sensitive graphs such as protein graphs, chemical graphs, molecular graphs, etc. Moreover, there is only one positive-positive node pair but relatively massive positive-negative node pairs in the self-supervised graph contrastive learning. This can lead to the same class, or very similar samples are considered negative samples. To this end, in this work, we propose a Virtual Masking Augmentation (VMA) to generate an augmentation graph without changing any structures from the original graph. Meanwhile, a node augmentation method is proposed to augment the positive node pairs by discovering the most similar nodes in the same graph. Then, two different augmentation graphs are generated and put into a contrastive learning model to learn the graph representation. Extensive experiments on massive datasets demonstrate that our method achieves new state-of-the-art results on self-supervised graph representation. The source code of the proposed method is available at https://github.com/DuanhaoranCC/CGRA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ww完成签到,获得积分10
刚刚
我是老大应助九城采纳,获得10
刚刚
1秒前
Watson发布了新的文献求助10
1秒前
3秒前
3秒前
4秒前
北海发布了新的文献求助10
4秒前
大模型应助vv采纳,获得10
5秒前
5秒前
哆小咪发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
今天柚子保熟了完成签到,获得积分10
6秒前
9秒前
xujy完成签到,获得积分10
10秒前
orixero应助qzj采纳,获得10
10秒前
少盐完成签到,获得积分10
10秒前
11秒前
长情的觅翠完成签到,获得积分10
11秒前
axiao发布了新的文献求助50
11秒前
11秒前
Qing完成签到,获得积分10
12秒前
努力的小杜应助AmigoA采纳,获得10
13秒前
13秒前
13秒前
cruise发布了新的文献求助10
13秒前
执着的纸鹤完成签到,获得积分20
13秒前
14秒前
paoo完成签到,获得积分10
14秒前
天地不语完成签到,获得积分10
14秒前
14秒前
watson发布了新的文献求助10
14秒前
skyline发布了新的文献求助10
16秒前
江上烟发布了新的文献求助10
16秒前
cs完成签到 ,获得积分10
16秒前
王秋婷发布了新的文献求助10
16秒前
独特易形完成签到 ,获得积分10
16秒前
17秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488751
求助须知:如何正确求助?哪些是违规求助? 3076283
关于积分的说明 9144615
捐赠科研通 2768593
什么是DOI,文献DOI怎么找? 1519274
邀请新用户注册赠送积分活动 703714
科研通“疑难数据库(出版商)”最低求助积分说明 701952