已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SINGLE CELL TRANSCRIPTOMICS REVEALS CELL POPULATIONS WITH UNIQUE MOLECULAR IDENTITIES OVER THE TIME COURSE OF OVULATION IN VIVO

排卵 生物 卵巢 黄体期 男科 内膜 卵泡膜 细胞生物学 卵泡期 内科学 内分泌学 激素 医学
作者
Caroline E. Kratka,Ruixu Huang,Emily Zaniker,Luhan T. Zhou,Yanxun Zhu,Daniela D Russo,Hoi Chang Lee,Alex K. Shalek,Brittany A. Goods,Francesca E. Duncan
出处
期刊:Fertility and Sterility [Elsevier BV]
卷期号:120 (4): e44-e44
标识
DOI:10.1016/j.fertnstert.2023.08.154
摘要

The objective of this study was to develop a single cell atlas of the mouse ovary across a time course of ovulation. A time course of in vivo ovulation was performed using CD-1 mice (n=3 per timepoint). Superovulation was induced with gonadotropins and ovaries were dissected at three timepoints post ovulation induction: 0h, 4h (peak expression of genes known to regulate ovulation), and 12h (point at which approximately half of the cumulus-oocyte-complexes [COCs] have undergone ovulation). One ovary from each mouse was collected at each time point. Pooled ovaries were dissociated into a single-cell suspension and subsequently analyzed using single cell sequencing. Following unbiased clustering of single cell data, differential expression, trajectory, and gene ontology analyses (DEA, TA, and GO, respectively) were performed to determine uniquely expressed genes and pathways across cell clusters. Single-cell analysis revealed 16 cell clusters (n = 25,714 cells) throughout ovulation, including epithelial, endothelial, stroma, theca, luteal, granulosa, and immune cells. Stroma, theca, and luteal cells (SC, TC, and LC, respectively) clustered separately by time, demonstrating unique identities specific to early and late stages of ovulation. Of note, cumulus cell (CC) clusters specific to ovulation were also detected. TA and GO analysis of top differentially expressed genes revealed that these cell types undergo distinct molecular changes that likely permit critical shifts in function. Early CC were enriched in genes that positively regulate EGF signaling, possibly stimulating COC expansion. Genes enriched in late CC negatively regulate cell motility/migration, suggesting loss of the migratory capability of CC at the conclusion of ovulation. Early SC were enriched in genes promoting angiogenesis within the extracellular matrix (ECM), likely accommodating transfer of factors such as immune cells and steroid hormones. Notably, genes enriched in late SC were involved in depolarization of voltage-gated calcium channels, a currently understudied process in the ovary. Gene enrichment in early TC suggested involvement in steroidogenic processes localized to the mitochondria, a known location of steroid biosynthesis. Importantly, GO analysis revealed a potential novel role for late TC in regulating metal homeostasis in the mitochondria. Like early TC, genes enriched in early LC were also involved in steroid production within the mitochondria. However, late LC were enriched in genes that exhibit positive regulation of stress fiber/actin filament assembly and cell secretion in the ECM, possibly reflecting the tissue remodeling and progesterone secretion that occurs with luteinization. This study is the first to evaluate gene expression and localization in the mouse ovary throughout ovulation with single cell technology and describes both novel cell types and time-dependent molecular changes within known cell types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
肖易应助幸福大白采纳,获得10
刚刚
zyq完成签到 ,获得积分10
1秒前
故城完成签到 ,获得积分10
1秒前
车灵寒发布了新的文献求助20
6秒前
脑洞疼应助Olivia采纳,获得30
6秒前
7秒前
wab完成签到,获得积分0
7秒前
弎夜发布了新的文献求助30
9秒前
忧心的网络完成签到,获得积分20
11秒前
不想干活应助幸福大白采纳,获得10
13秒前
不想干活应助幸福大白采纳,获得10
13秒前
万能图书馆应助幸福大白采纳,获得10
13秒前
领导范儿应助coollz采纳,获得10
14秒前
ccm应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
丘比特应助科研通管家采纳,获得10
14秒前
丘比特应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
15秒前
汉堡包应助科研三轮车采纳,获得10
19秒前
23秒前
Eliauk完成签到 ,获得积分10
27秒前
活泼尔烟发布了新的文献求助10
29秒前
32秒前
34秒前
赘婿应助车灵寒采纳,获得10
36秒前
36秒前
崔梦楠完成签到 ,获得积分10
37秒前
HUNGJJ发布了新的文献求助10
38秒前
无花果应助大佬求帮采纳,获得10
38秒前
Rainnnn发布了新的文献求助10
40秒前
丸太子发布了新的文献求助10
41秒前
香蕉觅云应助Yolo采纳,获得10
44秒前
44秒前
dkjg完成签到 ,获得积分10
48秒前
coollz发布了新的文献求助10
49秒前
mayounaizi14发布了新的文献求助10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610031
求助须知:如何正确求助?哪些是违规求助? 4016179
关于积分的说明 12434575
捐赠科研通 3697585
什么是DOI,文献DOI怎么找? 2038909
邀请新用户注册赠送积分活动 1071843
科研通“疑难数据库(出版商)”最低求助积分说明 955542