Radar Target Characterization and Deep Learning in Radar Automatic Target Recognition: A Review

计算机科学 人工智能 雷达 自动目标识别 深度学习 自动化 合成孔径雷达 电信 工程类 机械工程
作者
Wen Jiang,Yanping Wang,Yang Li,Yun Lin,Wenjie Shen
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:15 (15): 3742-3742
标识
DOI:10.3390/rs15153742
摘要

Radar automatic target recognition (RATR) technology is fundamental but complicated system engineering that combines sensor, target, environment, and signal processing technology, etc. It plays a significant role in improving the level and capabilities of military and civilian automation. Although RATR has been successfully applied in some aspects, the complete theoretical system has not been established. At present, deep learning algorithms have received a lot of attention and have emerged as potential and feasible solutions in RATR. This paper mainly reviews related articles published between 2010 and 2022, which corresponds to the period when deep learning methods were introduced into RATR research. In this paper, the current research status of radar target characteristics is summarized, including motion, micro-motion, one-dimensional, and two-dimensional characteristics, etc. This paper reviews the progress of deep learning methods in the feature extraction and recognition of radar target characteristics in recent years, including space, air, ground, sea-surface targets, etc. Due to more and more attention and research results published in the past few years, it is hoped that this review can provide potential guidance for future research and application of deep learning in fields related to RATR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漂亮的火龙果完成签到,获得积分10
1秒前
tmq发布了新的文献求助10
1秒前
脑洞疼应助Enoch采纳,获得10
1秒前
明亮的卿发布了新的文献求助30
2秒前
2秒前
一棵草发布了新的文献求助10
3秒前
biggerand发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
科研通AI2S应助gjg采纳,获得10
6秒前
6秒前
yizhichao发布了新的文献求助10
7秒前
8秒前
完美世界应助标致香采纳,获得10
10秒前
顾矜应助明亮的卿采纳,获得10
10秒前
10秒前
11秒前
科研通AI2S应助cxq采纳,获得10
11秒前
SparksU发布了新的文献求助10
12秒前
hua完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
16秒前
华仔应助火星上滑板采纳,获得10
16秒前
可爱的函函应助doctorw采纳,获得10
17秒前
Enoch发布了新的文献求助10
17秒前
17秒前
跳舞的年糕完成签到,获得积分10
18秒前
科研通AI5应助jijibao采纳,获得10
18秒前
迷路宛筠发布了新的文献求助20
18秒前
可爱的函函应助东东采纳,获得10
20秒前
安静苞络完成签到 ,获得积分10
23秒前
catalpaelm46完成签到 ,获得积分10
24秒前
25秒前
25秒前
量子星尘发布了新的文献求助10
25秒前
26秒前
Znn发布了新的文献求助100
30秒前
华仔应助可乐采纳,获得10
32秒前
我在九点完成签到 ,获得积分10
33秒前
Doc_Ocean完成签到,获得积分10
34秒前
量子星尘发布了新的文献求助10
34秒前
ZeSheng完成签到,获得积分10
35秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664331
求助须知:如何正确求助?哪些是违规求助? 3224444
关于积分的说明 9757422
捐赠科研通 2934339
什么是DOI,文献DOI怎么找? 1606816
邀请新用户注册赠送积分活动 758829
科研通“疑难数据库(出版商)”最低求助积分说明 735012