ST-ReGE: A Novel Spatial-Temporal Residual Graph Convolutional Network for CVD

计算机科学 残余物 图形 算法 理论计算机科学
作者
Huaicheng Zhang,Wenhan Liu,Sheng Chang,Hao Wang,Jin He,Qijun Huang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 216-227 被引量:8
标识
DOI:10.1109/jbhi.2023.3327025
摘要

Recently, deep learning (DL) has enabled rapid advancements in electrocardiogram (ECG)-based automatic cardiovascular disease (CVD) diagnosis. Multi-lead ECG signals have lead systems based on the potential differences between electrodes placed on the limbs and the chest. When applying DL models, ECG signals are usually treated as synchronized signals arranged in Euclidean space, which is the abstraction and generalization of real space. However, conventional DL models typically merely focus on temporal features when analyzing Euclidean data. These approaches ignore the spatial relationships of different leads, which are physiologically significant and useful for CVD diagnosis because different leads represent activities of specific heart regions. These relationships derived from spatial distributions of electrodes can be conveniently created in non-Euclidean data, making multi-lead ECGs better conform to their nature. Considering graph convolutional network (GCN) adept at analyzing non-Euclidean data, a novel spatial-temporal residual GCN for CVD diagnosis is proposed in this work. ECG signals are firstly divided into single-channel patches and transferred into nodes, which will be connected by spatial-temporal connections. The proposed model employs residual GCN blocks and feed-forward networks to alleviate over-smoothing and over-fitting. Moreover, residual connections and patch dividing enable the capture of global and detailed spatial-temporal features. Experimental results reveal that the proposed model achieves at least a 5.85% and 6.80% increase in F1 over other state-of-the-art algorithms with similar parameters and computations in both PTB-XL and Chapman databases. It indicates that the proposed model provides a promising avenue for intelligent diagnosis with limited computing resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pupu完成签到,获得积分10
1秒前
葉要加油发布了新的文献求助10
1秒前
leolee发布了新的文献求助20
1秒前
1秒前
嗯哼应助举个栗子采纳,获得20
1秒前
科研小狗发布了新的文献求助10
2秒前
Moonboss发布了新的文献求助10
2秒前
3秒前
niuniu完成签到,获得积分20
4秒前
5秒前
yuzhenzhong发布了新的文献求助10
5秒前
炒米粉完成签到,获得积分10
7秒前
7秒前
lulu8382发布了新的文献求助10
8秒前
zty发布了新的文献求助10
8秒前
8秒前
高高不是小菜鸡完成签到,获得积分10
8秒前
没有昵称完成签到,获得积分10
9秒前
11秒前
Lucas应助enchanted采纳,获得10
12秒前
jcx完成签到 ,获得积分10
12秒前
yuzhenzhong完成签到,获得积分10
13秒前
葉要加油完成签到,获得积分10
14秒前
李浅墨发布了新的文献求助10
14秒前
信仰完成签到 ,获得积分10
15秒前
动听草莓应助依霏采纳,获得10
16秒前
李浩源发布了新的文献求助10
16秒前
Rencal完成签到 ,获得积分10
18秒前
laylalele发布了新的文献求助10
19秒前
19秒前
安静远航发布了新的文献求助20
20秒前
21秒前
Melody完成签到,获得积分10
21秒前
21秒前
善学以致用应助傲娇文博采纳,获得10
23秒前
YM完成签到,获得积分10
23秒前
24秒前
25秒前
enchanted发布了新的文献求助10
26秒前
123123123完成签到,获得积分10
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313894
求助须知:如何正确求助?哪些是违规求助? 2946248
关于积分的说明 8529066
捐赠科研通 2621808
什么是DOI,文献DOI怎么找? 1434115
科研通“疑难数据库(出版商)”最低求助积分说明 665131
邀请新用户注册赠送积分活动 650738