材料科学
层错能
打滑(空气动力学)
吕德斯乐队
堆积
位错
叠加断层
部分位错
平面的
合金
变形带
结晶学
复合材料
凝聚态物理
核磁共振
化学
微观结构
物理
计算机科学
热力学
计算机图形学(图像)
作者
Kaiju Lu,Ankur Chauhan,D. Litvinov,Mike Schneider,Guillaume Laplanche,Jarir Aktaa
标识
DOI:10.1016/j.jmps.2023.105419
摘要
Multi-principal element alloys (MPEAs) of low stacking fault energies (SFEs) often exhibit outstanding damage tolerance. In contrast to the well-understood monotonic deformation behaviors, fatigue deformation mechanisms of the low-SFE MPEAs remain fundamental questions. Using TEM, this work demonstrated two main dislocation configurations cooperating in an exemplary low-SFE CoCrNi MPEA, namely slip bands and veins/walls/cells, which are usually formed in materials with low- and high-SFEs, respectively. Under low strain amplitude of 0.3%, the deformation features are found to include primary and double slip bands (dominating in ≈71% and 29% grains, respectively). Upon increasing strain amplitude, apart from the slip bands, dislocation substructures formed (i.e., veins/walls/cells present in ≈ 33% and 60% grains under strain amplitude of 0.5% and 0.7%, respectively) due to cross slip, despite the alloy's low-SFE. Moreover, the slip bands and walls/cells are found to serve more likely as geometrically necessary dislocations and statistically stored dislocations, respectively. Besides, the constraints from neighboring grains and Copley-Kear effect (rather than grain orientation) were suggested to play more important role in determining these dislocation patterns formation. Lastly, this work evidenced unexpected partial dislocations and stacking faults (in addition to usually observed screw dislocations) shuttling between the walls/cells by planar slip. This predominant planar slip behavior explains well the exceptional damage tolerance of low-SFE MPEAs. These insights can also advance the understanding of fatigue deformation of conventional alloys with low-SFEs.
科研通智能强力驱动
Strongly Powered by AbleSci AI