High robust spatio-temporal wavefront prediction with mixed graph neural network in adaptive optics

泽尼克多项式 稳健性(进化) 自适应光学 波前 计算机科学 协方差矩阵 算法 协方差 模式识别(心理学) 人工智能 数学 光学 统计 物理 基因 生物化学 化学
作者
Ju Tang,Wu Jian,jiawei zhang,Mengmeng Zhang,Zhaoyu Ren,Jianglei Di,Lei Hu,Guodong Liu,Jianlin Zhao
出处
期刊:Photonics Research [Optica Publishing Group]
卷期号:11 (11): 1802-1802
标识
DOI:10.1364/prj.497909
摘要

The time-delay problem, which is introduced by the response time of hardware for correction, is a critical and non-ignorable problem of adaptive optics (AO) systems. It will result in significant wavefront correction errors while turbulence changes severely or system responses slowly. Predictive AO is proposed to alleviate the time-delay problem for more accurate and stable corrections in the real time-varying atmosphere. However, the existing prediction approaches either lack the ability to extract non-linear temporal features, or overlook the authenticity of spatial features during prediction, leading to poor robustness in generalization. Here, we propose a mixed graph neural network (MGNN) for spatiotemporal wavefront prediction. The MGNN introduces the Zernike polynomial and takes its inherent covariance matrix as physical constraints. It takes advantage of conventional convolutional layers and graph convolutional layers for temporal feature catch and spatial feature analysis, respectively. In particular, the graph constraints from the covariance matrix and the weight learning of the transformation matrix promote the establishment of a realistic internal spatial pattern from limited data. Furthermore, its prediction accuracy and robustness to varying unknown turbulences, including the generalization from simulation to experiment, are all discussed and verified. In experimental verification, the MGNN trained with simulated data can achieve an approximate effect of that trained with real turbulence. By comparing it with two conventional methods, the demonstrated performance of the proposed method is superior to the conventional AO in terms of root mean square error (RMS). With the prediction of the MGNN, the mean and standard deviation of RMS in the conventional AO are reduced by 54.2% and 58.6% at most, respectively. The stable prediction performance makes it suitable for wavefront predictive correction in astronomical observation, laser communication, and microscopic imaging.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
FKHY应助yzz采纳,获得20
刚刚
1秒前
鲨鱼辣椒完成签到,获得积分10
1秒前
2秒前
3秒前
4秒前
袁睿韬应助lumen采纳,获得10
5秒前
PYF完成签到,获得积分10
6秒前
6秒前
Vicki完成签到,获得积分10
7秒前
aixiaoming0503完成签到,获得积分10
7秒前
搜集达人应助lemon采纳,获得10
8秒前
8秒前
Owen应助半夏采纳,获得10
10秒前
鲨鱼辣椒发布了新的文献求助10
10秒前
迟到虞姬发布了新的文献求助10
10秒前
10秒前
11秒前
今后应助欢喜的跳跳糖采纳,获得10
12秒前
14秒前
大模型应助wucl1990采纳,获得10
14秒前
15秒前
16秒前
17秒前
赘婿应助医大好学生采纳,获得10
18秒前
yzz完成签到,获得积分20
19秒前
19秒前
CodeCraft应助HHHSean采纳,获得30
19秒前
张鹏程发布了新的文献求助10
20秒前
王九八发布了新的文献求助10
20秒前
擦撒擦擦完成签到,获得积分10
20秒前
ybmdyr完成签到,获得积分20
20秒前
99v587完成签到,获得积分10
21秒前
21秒前
21秒前
半夏发布了新的文献求助10
22秒前
qianqian发布了新的文献求助10
22秒前
Or1ll完成签到,获得积分10
23秒前
pluto应助苏雅霏采纳,获得10
24秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962070
求助须知:如何正确求助?哪些是违规求助? 3508372
关于积分的说明 11140413
捐赠科研通 3240967
什么是DOI,文献DOI怎么找? 1791157
邀请新用户注册赠送积分活动 872793
科研通“疑难数据库(出版商)”最低求助积分说明 803371