亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

High robust spatio-temporal wavefront prediction with mixed graph neural network in adaptive optics

泽尼克多项式 稳健性(进化) 自适应光学 波前 计算机科学 协方差矩阵 算法 协方差 模式识别(心理学) 人工智能 数学 光学 统计 物理 基因 生物化学 化学
作者
Ju Tang,Wu Jian,jiawei zhang,Mengmeng Zhang,Zhaoyu Ren,Jianglei Di,Lei Hu,Guodong Liu,Jianlin Zhao
出处
期刊:Photonics Research [Optica Publishing Group]
卷期号:11 (11): 1802-1802
标识
DOI:10.1364/prj.497909
摘要

The time-delay problem, which is introduced by the response time of hardware for correction, is a critical and non-ignorable problem of adaptive optics (AO) systems. It will result in significant wavefront correction errors while turbulence changes severely or system responses slowly. Predictive AO is proposed to alleviate the time-delay problem for more accurate and stable corrections in the real time-varying atmosphere. However, the existing prediction approaches either lack the ability to extract non-linear temporal features, or overlook the authenticity of spatial features during prediction, leading to poor robustness in generalization. Here, we propose a mixed graph neural network (MGNN) for spatiotemporal wavefront prediction. The MGNN introduces the Zernike polynomial and takes its inherent covariance matrix as physical constraints. It takes advantage of conventional convolutional layers and graph convolutional layers for temporal feature catch and spatial feature analysis, respectively. In particular, the graph constraints from the covariance matrix and the weight learning of the transformation matrix promote the establishment of a realistic internal spatial pattern from limited data. Furthermore, its prediction accuracy and robustness to varying unknown turbulences, including the generalization from simulation to experiment, are all discussed and verified. In experimental verification, the MGNN trained with simulated data can achieve an approximate effect of that trained with real turbulence. By comparing it with two conventional methods, the demonstrated performance of the proposed method is superior to the conventional AO in terms of root mean square error (RMS). With the prediction of the MGNN, the mean and standard deviation of RMS in the conventional AO are reduced by 54.2% and 58.6% at most, respectively. The stable prediction performance makes it suitable for wavefront predictive correction in astronomical observation, laser communication, and microscopic imaging.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
西伯利亚老母猪完成签到,获得积分10
8秒前
在水一方应助火星上含芙采纳,获得10
24秒前
36秒前
fanhuaxuejin完成签到 ,获得积分10
37秒前
40秒前
55秒前
冬雪丶消融完成签到,获得积分10
56秒前
HOPKINSON发布了新的文献求助10
1分钟前
Paris完成签到 ,获得积分10
1分钟前
真的想不出名儿了完成签到,获得积分20
1分钟前
科目三应助ceeray23采纳,获得20
1分钟前
1分钟前
1分钟前
1分钟前
鲁欢发布了新的文献求助10
1分钟前
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
1分钟前
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
imlaoji发布了新的文献求助10
1分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
zzzz完成签到 ,获得积分10
3分钟前
dylan发布了新的文献求助10
3分钟前
3分钟前
Criminology34应助娇气的亦云采纳,获得10
3分钟前
量子星尘发布了新的文献求助150
3分钟前
我能读懂文献完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
YifanWang应助科研通管家采纳,获得20
3分钟前
YifanWang应助科研通管家采纳,获得20
3分钟前
YifanWang应助科研通管家采纳,获得10
3分钟前
YifanWang应助科研通管家采纳,获得10
3分钟前
3分钟前
dylan完成签到 ,获得积分20
4分钟前
caca完成签到,获得积分0
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5031109
求助须知:如何正确求助?哪些是违规求助? 4265949
关于积分的说明 13298344
捐赠科研通 4074987
什么是DOI,文献DOI怎么找? 2228809
邀请新用户注册赠送积分活动 1237448
关于科研通互助平台的介绍 1162152