High robust spatio-temporal wavefront prediction with mixed graph neural network in adaptive optics

泽尼克多项式 稳健性(进化) 自适应光学 波前 计算机科学 协方差矩阵 算法 协方差 模式识别(心理学) 人工智能 数学 光学 统计 物理 基因 生物化学 化学
作者
Ju Tang,Wu Jian,jiawei zhang,Mengmeng Zhang,Zhaoyu Ren,Jianglei Di,Lei Hu,Guodong Liu,Jianlin Zhao
出处
期刊:Photonics Research [The Optical Society]
卷期号:11 (11): 1802-1802
标识
DOI:10.1364/prj.497909
摘要

The time-delay problem, which is introduced by the response time of hardware for correction, is a critical and non-ignorable problem of adaptive optics (AO) systems. It will result in significant wavefront correction errors while turbulence changes severely or system responses slowly. Predictive AO is proposed to alleviate the time-delay problem for more accurate and stable corrections in the real time-varying atmosphere. However, the existing prediction approaches either lack the ability to extract non-linear temporal features, or overlook the authenticity of spatial features during prediction, leading to poor robustness in generalization. Here, we propose a mixed graph neural network (MGNN) for spatiotemporal wavefront prediction. The MGNN introduces the Zernike polynomial and takes its inherent covariance matrix as physical constraints. It takes advantage of conventional convolutional layers and graph convolutional layers for temporal feature catch and spatial feature analysis, respectively. In particular, the graph constraints from the covariance matrix and the weight learning of the transformation matrix promote the establishment of a realistic internal spatial pattern from limited data. Furthermore, its prediction accuracy and robustness to varying unknown turbulences, including the generalization from simulation to experiment, are all discussed and verified. In experimental verification, the MGNN trained with simulated data can achieve an approximate effect of that trained with real turbulence. By comparing it with two conventional methods, the demonstrated performance of the proposed method is superior to the conventional AO in terms of root mean square error (RMS). With the prediction of the MGNN, the mean and standard deviation of RMS in the conventional AO are reduced by 54.2% and 58.6% at most, respectively. The stable prediction performance makes it suitable for wavefront predictive correction in astronomical observation, laser communication, and microscopic imaging.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助orchid采纳,获得10
1秒前
1秒前
陶醉之玉完成签到,获得积分10
2秒前
Maddy完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
bobobo发布了新的文献求助10
3秒前
Enkcy发布了新的文献求助10
3秒前
CGEA完成签到,获得积分10
3秒前
wuyuan完成签到,获得积分10
4秒前
酷波er应助臻灏采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
风驻云停完成签到,获得积分10
6秒前
Ava应助隔壁的邻家小兴采纳,获得10
8秒前
等待的道消完成签到 ,获得积分10
8秒前
无极微光应助过时的访梦采纳,获得20
8秒前
xiaoxie发布了新的文献求助20
9秒前
9秒前
9秒前
呐呐呐发布了新的文献求助10
11秒前
情怀应助carrotyi采纳,获得10
12秒前
千树怜发布了新的文献求助10
14秒前
14秒前
15秒前
orchid发布了新的文献求助10
16秒前
小尚完成签到,获得积分10
16秒前
小小咸鱼完成签到 ,获得积分10
17秒前
summer完成签到,获得积分10
17秒前
17秒前
Frank完成签到,获得积分10
18秒前
Criminology34发布了新的文献求助300
19秒前
嘿嘿应助乾澪怀新采纳,获得10
19秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
happy星发布了新的文献求助10
22秒前
Boro发布了新的文献求助10
22秒前
23秒前
之_ZH完成签到 ,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5685045
求助须知:如何正确求助?哪些是违规求助? 5040038
关于积分的说明 15185849
捐赠科研通 4844104
什么是DOI,文献DOI怎么找? 2597110
邀请新用户注册赠送积分活动 1549690
关于科研通互助平台的介绍 1508176