The estimation of building carbon emission using nighttime light images: A comparative study at various spatial scales

温室气体 估计 索引(排版) 环境科学 碳纤维 回归分析 过程(计算) 计算机科学 计量经济学 数学 工程类 算法 机器学习 地质学 海洋学 系统工程 万维网 复合数 操作系统
作者
G. Wang,Qing Hu,Linghao He,Jialong Guo,Jin Huang,Lijin Zhong
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:101: 105066-105066 被引量:20
标识
DOI:10.1016/j.scs.2023.105066
摘要

As one of the fundamental sectors to measure the carbon emission levels in a certain region, building carbon emission plays an important role in determining low-carbon development plans. Most of the carbon emission estimation research mainly focuses on the establishment of bottom-up GHG inventory and the implication of policy-driven approaches, there are still many theoretical gaps in the usage of remote sensing data to predict building carbon emission. This paper presents a comprehensive study to discuss the performance of different regression models using various open nighttime light (NTL) data sources. The Noord Brabant province was employed as a case study to verify the feasibility of using different estimation models at various spatial scales (city-level, district-level, and neighborhood-level). Among all regression models, the geographically weighted regression (GWR) has been proven to better reflect the relationship between building carbon emissions and the NTL index. For practical applications, the carbon intensity (CI) and annual nighttime light index (ANLI) are a pair of optimal sets to establish a reliable estimation model. It exhibits higher utility value at the city-level due to the fewer interferences caused by non-building lighting sources. The results of this comparative study provide a new reference to support the establishment of carbon inventory. By illustrating the differences among various estimation models, the applicable scope of using open remote sensing data to estimate building carbon emissions can be further defined. The conclusion may provide more detailed instructions during the process of developing low-carbon cities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿九发布了新的文献求助10
1秒前
崔双艳发布了新的文献求助10
1秒前
研友_VZG7GZ应助铌123采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
4秒前
4秒前
zhangjin2969发布了新的文献求助10
4秒前
愤怒的小鸽子完成签到,获得积分10
4秒前
张楚岚发布了新的文献求助10
4秒前
5秒前
高唐发布了新的文献求助10
5秒前
6秒前
6秒前
Hello应助yaoyao采纳,获得10
7秒前
会撒娇的靖仇完成签到,获得积分20
7秒前
CipherSage应助echo采纳,获得10
8秒前
8秒前
wr完成签到 ,获得积分10
8秒前
赶紧毕业完成签到,获得积分10
9秒前
yao发布了新的文献求助10
10秒前
10秒前
研友_VZG7GZ应助崔双艳采纳,获得10
10秒前
安之若素发布了新的文献求助20
10秒前
快乐大炮完成签到,获得积分10
11秒前
浮游应助小白采纳,获得10
11秒前
12秒前
13秒前
xiaobai应助Auoroa采纳,获得10
13秒前
13秒前
搜集达人应助含糊的夜绿采纳,获得10
14秒前
14秒前
乌卡卡发布了新的文献求助10
15秒前
15秒前
Guofa.完成签到 ,获得积分10
16秒前
16秒前
田様应助甜甜耶耶采纳,获得10
16秒前
科研小白发布了新的文献求助10
17秒前
17秒前
xinyuxxx发布了新的文献求助10
18秒前
小余同学完成签到,获得积分10
18秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442393
求助须知:如何正确求助?哪些是违规求助? 4552598
关于积分的说明 14237646
捐赠科研通 4473916
什么是DOI,文献DOI怎么找? 2451715
邀请新用户注册赠送积分活动 1442571
关于科研通互助平台的介绍 1418541