The estimation of building carbon emission using nighttime light images: A comparative study at various spatial scales

温室气体 估计 索引(排版) 环境科学 碳纤维 回归分析 过程(计算) 计算机科学 计量经济学 数学 工程类 算法 机器学习 地质学 海洋学 系统工程 万维网 复合数 操作系统
作者
G. Wang,Qing Hu,Linghao He,Jialong Guo,Jin Huang,Lijin Zhong
出处
期刊:Sustainable Cities and Society [Elsevier BV]
卷期号:101: 105066-105066 被引量:20
标识
DOI:10.1016/j.scs.2023.105066
摘要

As one of the fundamental sectors to measure the carbon emission levels in a certain region, building carbon emission plays an important role in determining low-carbon development plans. Most of the carbon emission estimation research mainly focuses on the establishment of bottom-up GHG inventory and the implication of policy-driven approaches, there are still many theoretical gaps in the usage of remote sensing data to predict building carbon emission. This paper presents a comprehensive study to discuss the performance of different regression models using various open nighttime light (NTL) data sources. The Noord Brabant province was employed as a case study to verify the feasibility of using different estimation models at various spatial scales (city-level, district-level, and neighborhood-level). Among all regression models, the geographically weighted regression (GWR) has been proven to better reflect the relationship between building carbon emissions and the NTL index. For practical applications, the carbon intensity (CI) and annual nighttime light index (ANLI) are a pair of optimal sets to establish a reliable estimation model. It exhibits higher utility value at the city-level due to the fewer interferences caused by non-building lighting sources. The results of this comparative study provide a new reference to support the establishment of carbon inventory. By illustrating the differences among various estimation models, the applicable scope of using open remote sensing data to estimate building carbon emissions can be further defined. The conclusion may provide more detailed instructions during the process of developing low-carbon cities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助zhouxuefeng采纳,获得10
1秒前
涵泽发布了新的文献求助10
4秒前
乐观的鸽子完成签到,获得积分10
4秒前
顾矜应助追寻宛海采纳,获得20
5秒前
6秒前
baobaonaixi完成签到,获得积分10
7秒前
8秒前
我是老大应助感动丸子采纳,获得10
8秒前
Tink完成签到,获得积分0
9秒前
9秒前
酷波er应助leanne采纳,获得10
9秒前
Owen应助热闹的冬天采纳,获得10
10秒前
11秒前
11秒前
Hhhhhhu完成签到,获得积分10
12秒前
Hannah1117完成签到,获得积分10
14秒前
小幸运发布了新的文献求助10
14秒前
bkagyin应助zhengqisong采纳,获得10
14秒前
忧郁绮山完成签到 ,获得积分10
15秒前
shinn发布了新的文献求助10
15秒前
柯一一应助小马采纳,获得10
15秒前
zwying完成签到,获得积分10
16秒前
Hannah1117发布了新的文献求助10
17秒前
17秒前
20秒前
7890733发布了新的文献求助10
21秒前
cch完成签到,获得积分20
21秒前
oneonlycrown完成签到,获得积分10
22秒前
科目三应助Hannah1117采纳,获得10
22秒前
共享精神应助王晓雪采纳,获得10
24秒前
leanne发布了新的文献求助10
24秒前
s1kl完成签到,获得积分10
25秒前
谨慎翎关注了科研通微信公众号
25秒前
26秒前
凡迪亚比应助YGYANG采纳,获得10
26秒前
27秒前
冰冰完成签到 ,获得积分10
27秒前
在水一方应助hhhhwei采纳,获得10
30秒前
无与伦比完成签到,获得积分10
30秒前
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967219
求助须知:如何正确求助?哪些是违规求助? 3512559
关于积分的说明 11164121
捐赠科研通 3247452
什么是DOI,文献DOI怎么找? 1793849
邀请新用户注册赠送积分活动 874729
科研通“疑难数据库(出版商)”最低求助积分说明 804494