The estimation of building carbon emission using nighttime light images: A comparative study at various spatial scales

温室气体 估计 索引(排版) 环境科学 碳纤维 回归分析 过程(计算) 计算机科学 计量经济学 数学 工程类 算法 机器学习 地质学 万维网 操作系统 海洋学 复合数 系统工程
作者
G. Wang,Qing Hu,Linghao He,Jialong Guo,Jin Huang,Lijin Zhong
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:101: 105066-105066 被引量:20
标识
DOI:10.1016/j.scs.2023.105066
摘要

As one of the fundamental sectors to measure the carbon emission levels in a certain region, building carbon emission plays an important role in determining low-carbon development plans. Most of the carbon emission estimation research mainly focuses on the establishment of bottom-up GHG inventory and the implication of policy-driven approaches, there are still many theoretical gaps in the usage of remote sensing data to predict building carbon emission. This paper presents a comprehensive study to discuss the performance of different regression models using various open nighttime light (NTL) data sources. The Noord Brabant province was employed as a case study to verify the feasibility of using different estimation models at various spatial scales (city-level, district-level, and neighborhood-level). Among all regression models, the geographically weighted regression (GWR) has been proven to better reflect the relationship between building carbon emissions and the NTL index. For practical applications, the carbon intensity (CI) and annual nighttime light index (ANLI) are a pair of optimal sets to establish a reliable estimation model. It exhibits higher utility value at the city-level due to the fewer interferences caused by non-building lighting sources. The results of this comparative study provide a new reference to support the establishment of carbon inventory. By illustrating the differences among various estimation models, the applicable scope of using open remote sensing data to estimate building carbon emissions can be further defined. The conclusion may provide more detailed instructions during the process of developing low-carbon cities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黎明完成签到,获得积分10
刚刚
浮游应助tly采纳,获得10
刚刚
踏雪飞鸿完成签到,获得积分10
1秒前
丰富的天佑完成签到 ,获得积分10
2秒前
问天完成签到 ,获得积分10
3秒前
Fairy完成签到,获得积分10
3秒前
黎明发布了新的文献求助10
4秒前
隐形冷亦完成签到,获得积分10
4秒前
5秒前
5秒前
深情安青应助清爽慕山采纳,获得10
5秒前
Orange应助mnc采纳,获得10
7秒前
斯文败类应助MA采纳,获得10
8秒前
绵杨发布了新的文献求助10
9秒前
9秒前
11秒前
馍夹菜完成签到,获得积分10
12秒前
zfd发布了新的文献求助10
13秒前
吴海娇完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
一个可爱玉完成签到,获得积分20
16秒前
英俊的铭应助chaoschen采纳,获得50
20秒前
星辰大海应助忧心的清炎采纳,获得10
20秒前
慕青应助一个可爱玉采纳,获得10
21秒前
23秒前
充电宝应助Luke采纳,获得10
24秒前
量子星尘发布了新的文献求助10
25秒前
25秒前
27秒前
dala发布了新的文献求助30
28秒前
Go完成签到,获得积分10
29秒前
爆米花应助无心的土豆采纳,获得10
30秒前
30秒前
咖褐完成签到 ,获得积分10
31秒前
zwj完成签到,获得积分20
31秒前
kk发布了新的文献求助10
31秒前
31秒前
在水一方应助繁荣的牛排采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425319
求助须知:如何正确求助?哪些是违规求助? 4539387
关于积分的说明 14167836
捐赠科研通 4456897
什么是DOI,文献DOI怎么找? 2444339
邀请新用户注册赠送积分活动 1435316
关于科研通互助平台的介绍 1412740