The estimation of building carbon emission using nighttime light images: A comparative study at various spatial scales

温室气体 估计 索引(排版) 环境科学 碳纤维 回归分析 过程(计算) 计算机科学 计量经济学 数学 工程类 算法 机器学习 地质学 海洋学 系统工程 万维网 复合数 操作系统
作者
G. Wang,Qing Hu,Linghao He,Jialong Guo,Jin Huang,Lijin Zhong
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:101: 105066-105066 被引量:20
标识
DOI:10.1016/j.scs.2023.105066
摘要

As one of the fundamental sectors to measure the carbon emission levels in a certain region, building carbon emission plays an important role in determining low-carbon development plans. Most of the carbon emission estimation research mainly focuses on the establishment of bottom-up GHG inventory and the implication of policy-driven approaches, there are still many theoretical gaps in the usage of remote sensing data to predict building carbon emission. This paper presents a comprehensive study to discuss the performance of different regression models using various open nighttime light (NTL) data sources. The Noord Brabant province was employed as a case study to verify the feasibility of using different estimation models at various spatial scales (city-level, district-level, and neighborhood-level). Among all regression models, the geographically weighted regression (GWR) has been proven to better reflect the relationship between building carbon emissions and the NTL index. For practical applications, the carbon intensity (CI) and annual nighttime light index (ANLI) are a pair of optimal sets to establish a reliable estimation model. It exhibits higher utility value at the city-level due to the fewer interferences caused by non-building lighting sources. The results of this comparative study provide a new reference to support the establishment of carbon inventory. By illustrating the differences among various estimation models, the applicable scope of using open remote sensing data to estimate building carbon emissions can be further defined. The conclusion may provide more detailed instructions during the process of developing low-carbon cities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hzml完成签到 ,获得积分10
1秒前
妖精完成签到 ,获得积分10
2秒前
2秒前
3秒前
江哥完成签到,获得积分10
3秒前
mengmenglv完成签到 ,获得积分0
3秒前
xdc完成签到,获得积分20
3秒前
4秒前
Zo完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
6秒前
明亮的小懒虫完成签到 ,获得积分10
6秒前
xdc发布了新的文献求助10
7秒前
wl完成签到,获得积分20
7秒前
gf完成签到 ,获得积分10
7秒前
英姑应助唐Doctor采纳,获得10
8秒前
8秒前
9秒前
10秒前
肯德基没有黄焖鸡完成签到 ,获得积分10
11秒前
好困发布了新的文献求助10
11秒前
CosnEdge完成签到,获得积分10
11秒前
思苇完成签到,获得积分10
12秒前
999完成签到,获得积分10
14秒前
不会游泳的鱼完成签到,获得积分10
15秒前
16秒前
Dr_Han完成签到,获得积分10
17秒前
奋斗往事完成签到 ,获得积分10
17秒前
丁圣元完成签到,获得积分10
17秒前
心信鑫完成签到 ,获得积分10
18秒前
AmyHu完成签到,获得积分10
19秒前
George完成签到,获得积分10
20秒前
天天开心完成签到 ,获得积分10
20秒前
故里长安完成签到,获得积分10
21秒前
体贴香岚完成签到 ,获得积分10
22秒前
yyjy完成签到,获得积分10
22秒前
浮浮世世应助滕滕采纳,获得30
22秒前
善良的盼易完成签到,获得积分10
22秒前
唐唐完成签到 ,获得积分10
22秒前
树袋熊完成签到,获得积分10
22秒前
浅浅殇完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482706
求助须知:如何正确求助?哪些是违规求助? 4583446
关于积分的说明 14389578
捐赠科研通 4512683
什么是DOI,文献DOI怎么找? 2473180
邀请新用户注册赠送积分活动 1459251
关于科研通互助平台的介绍 1432861