The estimation of building carbon emission using nighttime light images: A comparative study at various spatial scales

温室气体 估计 索引(排版) 环境科学 碳纤维 回归分析 过程(计算) 计算机科学 计量经济学 数学 工程类 算法 机器学习 地质学 万维网 操作系统 海洋学 复合数 系统工程
作者
G. Wang,Qing Hu,Linghao He,Jialong Guo,Jin Huang,Lijin Zhong
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:101: 105066-105066 被引量:20
标识
DOI:10.1016/j.scs.2023.105066
摘要

As one of the fundamental sectors to measure the carbon emission levels in a certain region, building carbon emission plays an important role in determining low-carbon development plans. Most of the carbon emission estimation research mainly focuses on the establishment of bottom-up GHG inventory and the implication of policy-driven approaches, there are still many theoretical gaps in the usage of remote sensing data to predict building carbon emission. This paper presents a comprehensive study to discuss the performance of different regression models using various open nighttime light (NTL) data sources. The Noord Brabant province was employed as a case study to verify the feasibility of using different estimation models at various spatial scales (city-level, district-level, and neighborhood-level). Among all regression models, the geographically weighted regression (GWR) has been proven to better reflect the relationship between building carbon emissions and the NTL index. For practical applications, the carbon intensity (CI) and annual nighttime light index (ANLI) are a pair of optimal sets to establish a reliable estimation model. It exhibits higher utility value at the city-level due to the fewer interferences caused by non-building lighting sources. The results of this comparative study provide a new reference to support the establishment of carbon inventory. By illustrating the differences among various estimation models, the applicable scope of using open remote sensing data to estimate building carbon emissions can be further defined. The conclusion may provide more detailed instructions during the process of developing low-carbon cities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小马甲应助jialin采纳,获得10
1秒前
2秒前
lzr完成签到 ,获得积分10
2秒前
yurh发布了新的文献求助10
3秒前
rong关注了科研通微信公众号
4秒前
CodeCraft应助growing采纳,获得30
4秒前
bai发布了新的文献求助10
5秒前
彭于晏应助纯真的魔镜采纳,获得10
5秒前
科研通AI6应助楼下太吵了采纳,获得10
5秒前
可爱的函函应助Chang采纳,获得10
5秒前
cy完成签到,获得积分10
6秒前
6秒前
Xiang应助嘚嘚采纳,获得10
6秒前
6秒前
7秒前
7秒前
研友_VZG7GZ应助jzt12138采纳,获得10
8秒前
8秒前
研友_8R7b2L完成签到,获得积分10
9秒前
agnes完成签到,获得积分10
9秒前
xiao发布了新的文献求助30
9秒前
CL完成签到,获得积分10
9秒前
10秒前
10秒前
ZJING9完成签到,获得积分10
11秒前
goldenrod发布了新的文献求助10
11秒前
cy发布了新的文献求助10
12秒前
cciocio发布了新的文献求助10
12秒前
ysxl发布了新的文献求助10
12秒前
CipherSage应助楼下太吵了采纳,获得10
12秒前
12秒前
jialin发布了新的文献求助10
13秒前
14秒前
15秒前
棋士应助CL采纳,获得10
15秒前
认真的纸飞机完成签到,获得积分10
16秒前
16秒前
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684670
求助须知:如何正确求助?哪些是违规求助? 5038282
关于积分的说明 15184936
捐赠科研通 4843881
什么是DOI,文献DOI怎么找? 2596988
邀请新用户注册赠送积分活动 1549578
关于科研通互助平台的介绍 1508084