The estimation of building carbon emission using nighttime light images: A comparative study at various spatial scales

温室气体 估计 索引(排版) 环境科学 碳纤维 回归分析 过程(计算) 计算机科学 计量经济学 数学 工程类 算法 机器学习 地质学 万维网 操作系统 海洋学 复合数 系统工程
作者
G. Wang,Qing Hu,Linghao He,Jialong Guo,Jin Huang,Lijin Zhong
出处
期刊:Sustainable Cities and Society [Elsevier BV]
卷期号:101: 105066-105066 被引量:20
标识
DOI:10.1016/j.scs.2023.105066
摘要

As one of the fundamental sectors to measure the carbon emission levels in a certain region, building carbon emission plays an important role in determining low-carbon development plans. Most of the carbon emission estimation research mainly focuses on the establishment of bottom-up GHG inventory and the implication of policy-driven approaches, there are still many theoretical gaps in the usage of remote sensing data to predict building carbon emission. This paper presents a comprehensive study to discuss the performance of different regression models using various open nighttime light (NTL) data sources. The Noord Brabant province was employed as a case study to verify the feasibility of using different estimation models at various spatial scales (city-level, district-level, and neighborhood-level). Among all regression models, the geographically weighted regression (GWR) has been proven to better reflect the relationship between building carbon emissions and the NTL index. For practical applications, the carbon intensity (CI) and annual nighttime light index (ANLI) are a pair of optimal sets to establish a reliable estimation model. It exhibits higher utility value at the city-level due to the fewer interferences caused by non-building lighting sources. The results of this comparative study provide a new reference to support the establishment of carbon inventory. By illustrating the differences among various estimation models, the applicable scope of using open remote sensing data to estimate building carbon emissions can be further defined. The conclusion may provide more detailed instructions during the process of developing low-carbon cities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang发布了新的文献求助10
1秒前
orixero应助shadowj1020采纳,获得10
1秒前
白鹭发布了新的文献求助10
1秒前
默默的奇迹完成签到,获得积分20
2秒前
xxfsx应助enen采纳,获得10
2秒前
3秒前
hhh完成签到 ,获得积分10
3秒前
3秒前
小婷发布了新的文献求助10
3秒前
XinG完成签到,获得积分10
4秒前
pcr163应助Unlung采纳,获得200
4秒前
5秒前
anders完成签到 ,获得积分10
6秒前
wins完成签到,获得积分10
6秒前
zzh发布了新的文献求助10
6秒前
科研通AI5应助周杰采纳,获得30
6秒前
怎么又困了完成签到,获得积分10
7秒前
霸气若男发布了新的文献求助10
7秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
9秒前
Owen应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
9秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
10秒前
情怀应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5153679
求助须知:如何正确求助?哪些是违规求助? 4349269
关于积分的说明 13541565
捐赠科研通 4191976
什么是DOI,文献DOI怎么找? 2299237
邀请新用户注册赠送积分活动 1299236
关于科研通互助平台的介绍 1244260