The estimation of building carbon emission using nighttime light images: A comparative study at various spatial scales

温室气体 估计 索引(排版) 环境科学 碳纤维 回归分析 过程(计算) 计算机科学 计量经济学 数学 工程类 算法 机器学习 地质学 海洋学 系统工程 万维网 复合数 操作系统
作者
G. Wang,Qing Hu,Linghao He,Jialong Guo,Jin Huang,Lijin Zhong
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:101: 105066-105066 被引量:20
标识
DOI:10.1016/j.scs.2023.105066
摘要

As one of the fundamental sectors to measure the carbon emission levels in a certain region, building carbon emission plays an important role in determining low-carbon development plans. Most of the carbon emission estimation research mainly focuses on the establishment of bottom-up GHG inventory and the implication of policy-driven approaches, there are still many theoretical gaps in the usage of remote sensing data to predict building carbon emission. This paper presents a comprehensive study to discuss the performance of different regression models using various open nighttime light (NTL) data sources. The Noord Brabant province was employed as a case study to verify the feasibility of using different estimation models at various spatial scales (city-level, district-level, and neighborhood-level). Among all regression models, the geographically weighted regression (GWR) has been proven to better reflect the relationship between building carbon emissions and the NTL index. For practical applications, the carbon intensity (CI) and annual nighttime light index (ANLI) are a pair of optimal sets to establish a reliable estimation model. It exhibits higher utility value at the city-level due to the fewer interferences caused by non-building lighting sources. The results of this comparative study provide a new reference to support the establishment of carbon inventory. By illustrating the differences among various estimation models, the applicable scope of using open remote sensing data to estimate building carbon emissions can be further defined. The conclusion may provide more detailed instructions during the process of developing low-carbon cities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热心的易烟完成签到,获得积分10
刚刚
1秒前
Hello应助小学生采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
song发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
alvis关注了科研通微信公众号
3秒前
LingMg发布了新的文献求助30
4秒前
不安溪灵完成签到,获得积分10
4秒前
4秒前
4秒前
熊猫海发布了新的文献求助10
4秒前
5秒前
伞下铭发布了新的文献求助10
5秒前
5秒前
6秒前
Herzing发布了新的文献求助10
6秒前
6秒前
喜悦发卡完成签到,获得积分10
7秒前
小青椒应助斯文明杰采纳,获得30
7秒前
斯文凝蕊发布了新的文献求助10
7秒前
大个应助www采纳,获得10
7秒前
Y1B完成签到,获得积分10
7秒前
7秒前
糯米饭完成签到 ,获得积分10
8秒前
8秒前
8秒前
shen完成签到,获得积分20
9秒前
远方发布了新的文献求助10
9秒前
9秒前
凶狠的盼柳完成签到,获得积分10
10秒前
嬴炎完成签到,获得积分10
10秒前
10秒前
123完成签到,获得积分10
10秒前
10秒前
10秒前
fzh发布了新的文献求助10
11秒前
mutong应助邵南松采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667047
求助须知:如何正确求助?哪些是违规求助? 4883873
关于积分的说明 15118527
捐赠科研通 4825937
什么是DOI,文献DOI怎么找? 2583643
邀请新用户注册赠送积分活动 1537807
关于科研通互助平台的介绍 1496002