CATE: Contrastive augmentation and tree-enhanced embedding for credit scoring

可解释性 计算机科学 水准点(测量) 嵌入 机器学习 人工智能 特征(语言学) 决策树 树(集合论) 数据挖掘 数学 语言学 大地测量学 数学分析 哲学 地理
作者
Ying Gao,Haolang Xiao,Choujun Zhan,Lingrui Liang,Wentian Cai,Xiping Hu
出处
期刊:Information Sciences [Elsevier BV]
卷期号:651: 119447-119447 被引量:4
标识
DOI:10.1016/j.ins.2023.119447
摘要

Credit transactions are vital financial activities that yield substantial economic benefits. To further improve lending decisions, stakeholders require accurate and interpretable credit scoring methods. While the majority of previous studies have focused on the relationship between individual features and credit risk, only a few have investigated cross-features. Notably, cross-features can not only represent structured data effectively but also provide richer semantic information than individual features. Nevertheless, most previous methods for learning cross-feature effects from credit data have been implicit and unexplainable. This paper proposes a new credit scoring model based on contrastive augmentation and tree-enhanced embedding mechanisms, termed CATE. The proposed model automatically constructs explainable cross-features by using tree-based models to learn decision rules from the data. Moreover, the importance of each local cross-feature is then derived through an attention mechanism. Finally, the credit score of a user is evaluated using embedding vectors. Experimental results on 4 public datasets demonstrated the interpretability of our proposed method and outperformed 13 state-of-the-art benchmark methods in terms of performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
某慧完成签到,获得积分10
1秒前
2秒前
ding应助忧郁的鱿鱼采纳,获得10
3秒前
研友_VZG7GZ应助坚强冰蝶采纳,获得10
4秒前
6秒前
7秒前
bxxxxx应助包容秋荷采纳,获得200
9秒前
10秒前
10秒前
zcy完成签到 ,获得积分10
11秒前
CZLhaust发布了新的文献求助10
11秒前
洁净方盒发布了新的文献求助10
12秒前
天竹子发布了新的文献求助10
16秒前
17秒前
fxb发布了新的文献求助10
18秒前
酷波er应助大侦探皮卡丘采纳,获得10
19秒前
19秒前
忧郁的鱿鱼完成签到,获得积分10
19秒前
ylwang24发布了新的文献求助10
19秒前
小西发布了新的文献求助10
20秒前
21秒前
wuyu发布了新的文献求助10
22秒前
Ma完成签到,获得积分10
23秒前
MinQi完成签到,获得积分10
24秒前
24秒前
传奇3应助Leo采纳,获得10
25秒前
852应助小韩同学采纳,获得10
25秒前
26秒前
Ma发布了新的文献求助10
26秒前
27秒前
28秒前
量子星尘发布了新的文献求助30
29秒前
ggappsong发布了新的文献求助10
29秒前
啦啦啦发布了新的文献求助10
32秒前
英勇的凌蝶完成签到 ,获得积分10
32秒前
落尘府完成签到,获得积分10
33秒前
曾天祥发布了新的文献求助10
33秒前
34秒前
yihuifa发布了新的文献求助10
38秒前
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959791
求助须知:如何正确求助?哪些是违规求助? 3506016
关于积分的说明 11127539
捐赠科研通 3237976
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871758
科研通“疑难数据库(出版商)”最低求助积分说明 803019