CATE: Contrastive augmentation and tree-enhanced embedding for credit scoring

可解释性 计算机科学 水准点(测量) 嵌入 机器学习 人工智能 特征(语言学) 决策树 树(集合论) 数据挖掘 数学 语言学 数学分析 哲学 大地测量学 地理
作者
Ying Gao,Haolang Xiao,Choujun Zhan,Lingrui Liang,Wentian Cai,Xiping Hu
出处
期刊:Information Sciences [Elsevier BV]
卷期号:651: 119447-119447 被引量:4
标识
DOI:10.1016/j.ins.2023.119447
摘要

Credit transactions are vital financial activities that yield substantial economic benefits. To further improve lending decisions, stakeholders require accurate and interpretable credit scoring methods. While the majority of previous studies have focused on the relationship between individual features and credit risk, only a few have investigated cross-features. Notably, cross-features can not only represent structured data effectively but also provide richer semantic information than individual features. Nevertheless, most previous methods for learning cross-feature effects from credit data have been implicit and unexplainable. This paper proposes a new credit scoring model based on contrastive augmentation and tree-enhanced embedding mechanisms, termed CATE. The proposed model automatically constructs explainable cross-features by using tree-based models to learn decision rules from the data. Moreover, the importance of each local cross-feature is then derived through an attention mechanism. Finally, the credit score of a user is evaluated using embedding vectors. Experimental results on 4 public datasets demonstrated the interpretability of our proposed method and outperformed 13 state-of-the-art benchmark methods in terms of performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助自由南珍采纳,获得10
刚刚
研友_大帅完成签到,获得积分10
1秒前
王七七完成签到,获得积分10
1秒前
kk完成签到,获得积分10
1秒前
Astoria完成签到,获得积分10
2秒前
17发布了新的文献求助10
3秒前
5秒前
5秒前
共享精神应助Chuu♡采纳,获得10
5秒前
yiyi037118发布了新的文献求助10
6秒前
浮游应助胡图图采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
李联洪应助科研通管家采纳,获得10
8秒前
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
abab小王发布了新的文献求助10
9秒前
zzt应助guard采纳,获得10
10秒前
11秒前
可心完成签到,获得积分10
11秒前
科研通AI2S应助柠柠采纳,获得10
12秒前
12秒前
13秒前
领导范儿应助王七七采纳,获得10
14秒前
14秒前
无花果应助小石头采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5050534
求助须知:如何正确求助?哪些是违规求助? 4278188
关于积分的说明 13335889
捐赠科研通 4093182
什么是DOI,文献DOI怎么找? 2240129
邀请新用户注册赠送积分活动 1246793
关于科研通互助平台的介绍 1175648