亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Short Text Sentiment Analysis Based on Multiple Attention Mechanisms and TextCNN-BiLSTM

计算机科学 人工智能 自然语言处理 情绪分析 语义学(计算机科学) 卷积神经网络 背景(考古学) 光学(聚焦) 保险丝(电气) 词(群论) 粒度 代表(政治) 操作系统 工程类 程序设计语言 生物 光学 政治学 法学 政治 电气工程 物理 哲学 语言学 古生物学
作者
Chuanbin Wu,Yuwei Zhang,Sijun Lu,Guoyan Xu
标识
DOI:10.1109/iceiec58029.2023.10199931
摘要

Researchers have been paying more and more attention lately to the use of natural language processing methods to analyze the sentiment of short text. Due to the characteristics of sparsity and irregularity, short text classification often has a large number of implied semantics, which requires a high feature learning ability of the model. The current common models, like Convolutional Neural Network (CNN), can extract the local information of sentences but ignore the contextual semantic information between words. Bidirectional Long Short-Term Memory Network (BiLSTM) can fill in the deficiencies left by CNN's inability to effectively extract the contextual semantic information of text, but the local features of sentences cannot be extracted well. In this paper, a text sentiment analysis classification model based on multiple attention mechanisms and TextCNN-BiLSTM is proposed. The dynamic word vector representation of text is obtained by the BERT model, local information with different granularity is extracted in parallel by TextCNN with different scales, The global dependence is then mined using the multi-head self-attention process, which reduces the impact of context-dependent long-distance words. To obtain the prediction result of sentiment analysis, the BiLSTM model is finally input to fuse the time sequence information, the attention mechanism is combined to focus on the crucial data. The experimental results show that the accuracy and F1 are improved on two data sets compared with previously reported models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思柔完成签到,获得积分10
3秒前
Yi完成签到 ,获得积分10
10秒前
一只大嵩鼠完成签到 ,获得积分10
32秒前
35秒前
吃橘子吗完成签到 ,获得积分10
35秒前
anders完成签到 ,获得积分10
55秒前
Ricardo完成签到 ,获得积分10
57秒前
战战兢兢的失眠完成签到 ,获得积分10
1分钟前
1分钟前
翻翻发布了新的文献求助10
1分钟前
1分钟前
1分钟前
lyw发布了新的文献求助10
1分钟前
1分钟前
翻翻完成签到,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
潮鸣完成签到 ,获得积分10
2分钟前
Li发布了新的文献求助10
2分钟前
2分钟前
2分钟前
巫马百招完成签到,获得积分10
2分钟前
lyw发布了新的文献求助10
2分钟前
wanci应助Fortune采纳,获得10
2分钟前
fossick2010完成签到 ,获得积分10
2分钟前
Penny完成签到,获得积分10
3分钟前
3分钟前
Penny发布了新的文献求助10
3分钟前
andrele发布了新的文献求助50
3分钟前
Fortune发布了新的文献求助10
3分钟前
颜安完成签到,获得积分20
3分钟前
张张完成签到 ,获得积分10
3分钟前
3分钟前
Fortune完成签到,获得积分10
3分钟前
Vincent发布了新的文献求助10
3分钟前
爆米花应助lzmcsp采纳,获得10
3分钟前
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788513
求助须知:如何正确求助?哪些是违规求助? 5708718
关于积分的说明 15473598
捐赠科研通 4916529
什么是DOI,文献DOI怎么找? 2646443
邀请新用户注册赠送积分活动 1594106
关于科研通互助平台的介绍 1548507