Heterogeneous graph framework for predicting the association between lncRNA and disease and case on uterine fibroid

计算生物学 子宫肌瘤 计算机科学 疾病 长非编码RNA 乙二醇 热空气 生物 生物信息学 基因 核糖核酸 医学 遗传学 病理
作者
Qingjing Sheng,Yuan Tan,Liyuan Zhang,Zhiping Wu,Beiying Wang,Xiao‐Ying He
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:165: 107331-107331
标识
DOI:10.1016/j.compbiomed.2023.107331
摘要

Long non-coding RNAs (lncRNAs) play crucial regulatory roles in various cellular processes, including gene expression, chromatin remodeling, and protein localization. Dysregulation of lncRNAs has been linked to several diseases, making it essential to understand their functions in disease mechanisms and therapeutic strategies. However, traditional experimental methods for studying lncRNA function are time-consuming, expensive, and offer limited insights. In recent years, computational methods have emerged as valuable tools for predicting lncRNA functions and their associations with diseases. However, many existing methods focus on constructing separate networks for lncRNA and disease similarity, resulting in information loss and insufficient processing capacity for isolated nodes. To address this, we developed ‘RGLD’ by combining Random Walk with restarting (RWR), Graph Neural Network (GNN), and Graph Attention Networks (GAT) to predict lncRNA-disease associations in a heterogeneous network. RGLD achieved an impressive AUC of 0.88, outperforming other methods. It can also predict novel associations between lncRNAs and diseases. RGLD identified HOTAIR, MEG3, and PVT1 as lncRNAs associated with uterine fibroids. Biological experiments directly or indirectly verified the involvement of these three lncRNAs in uterine fibroids, validating the accuracy of RGLD's predictions. Furthermore, we extensively discussed the functions of the target genes regulated by these lncRNAs in uterine fibroids, providing evidence for their role in the development and progression of the disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助revive采纳,获得10
1秒前
英姑应助大王采纳,获得10
1秒前
阔达的花卷完成签到 ,获得积分10
2秒前
民大胡完成签到,获得积分10
3秒前
4秒前
Guyiru完成签到,获得积分10
4秒前
5秒前
李健应助WW采纳,获得10
5秒前
5秒前
6秒前
Akim应助活力安南采纳,获得10
7秒前
KSung完成签到,获得积分10
7秒前
aaaaaa完成签到,获得积分10
7秒前
pluto应助鲁班七号采纳,获得10
7秒前
甜甜的冬灵关注了科研通微信公众号
8秒前
9秒前
叶羽天完成签到,获得积分20
10秒前
小蘑菇应助蓦然回首采纳,获得10
10秒前
12秒前
温柔的惜儿完成签到 ,获得积分10
12秒前
科研通AI5应助榕树采纳,获得10
13秒前
JamesPei应助charlene采纳,获得10
13秒前
13秒前
小富婆发布了新的文献求助30
13秒前
彭于彦祖应助科研通管家采纳,获得20
13秒前
深情安青应助科研通管家采纳,获得10
14秒前
知还发布了新的文献求助10
14秒前
科目三应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
pluto应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
科研通AI5应助yaya采纳,获得10
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
星辰大海应助qiqi1111采纳,获得10
15秒前
15秒前
cdercder应助科研通管家采纳,获得20
15秒前
陶1122应助科研通管家采纳,获得150
15秒前
pluto应助科研通管家采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741065
求助须知:如何正确求助?哪些是违规求助? 3283833
关于积分的说明 10037107
捐赠科研通 3000659
什么是DOI,文献DOI怎么找? 1646647
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427